Department of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China.
Department of Computer Science and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Japan.
Sensors (Basel). 2024 Jun 6;24(11):3680. doi: 10.3390/s24113680.
Human trajectories can be tracked by the internal processing of a camera as an edge device. This work aims to match peoples' trajectories obtained from cameras to sensor data such as acceleration and angular velocity, obtained from wearable devices. Since human trajectory and sensor data differ in modality, the matching method is not straightforward. Furthermore, complete trajectory information is unavailable; it is difficult to determine which fragments belong to whom. To solve this problem, we newly proposed the to find the similarity between a unit period trajectory and the corresponding sensor data. We also propose a that systematically updates the similarity data and integrates it over time while keeping other trajectories in mind. We confirmed that the proposed method can match human trajectories and sensor data with an accuracy, a sensitivity, and an F1 of 0.725. Our models achieved decent results on the UEA dataset.
可以通过相机作为边缘设备的内部处理来跟踪人的轨迹。这项工作旨在将从相机获得的人的轨迹与从可穿戴设备获得的加速度和角速度等传感器数据相匹配。由于人体轨迹和传感器数据在模态上有所不同,因此匹配方法并不直接。此外,无法获得完整的轨迹信息,难以确定哪些片段属于谁。为了解决这个问题,我们新提出了一种方法来找到单位周期轨迹和相应传感器数据之间的相似性。我们还提出了一种系统地更新相似性数据并随着时间的推移进行整合的方法,同时考虑其他轨迹。我们证实,所提出的方法可以以准确率为 0.725 的精度、灵敏度和 F1 匹配人体轨迹和传感器数据。我们的模型在 UEA 数据集上取得了不错的结果。