Department of Geography, Geographic Information Systems Unit, University of Zurich (UZH), Winterthurerstrasse 190, 8057 Zurich, Switzerland.
University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Andreasstrasse 15, 8050 Zurich, Switzerland.
Sensors (Basel). 2020 Jan 21;20(3):588. doi: 10.3390/s20030588.
This paper aims to examine the role of global positioning system (GPS) sensor data in real-life physical activity (PA) type detection. Thirty-three young participants wore devices including GPS and accelerometer sensors on five body positions and performed daily PAs in two protocols, namely semi-structured and real-life. One general random forest (RF) model integrating data from all sensors and five individual RF models using data from each sensor position were trained using semi-structured (Scenario 1) and combined (semi-structured + real-life) data (Scenario 2). The results showed that in general, adding GPS features (speed and elevation difference) to accelerometer data improves classification performance particularly for detecting non-level and level walking. Assessing the transferability of the models on real-life data showed that models from Scenario 2 are strongly transferable, particularly when adding GPS data to the training data. Comparing individual models indicated that knee-models provide comparable classification performance (above 80%) to general models in both scenarios. In conclusion, adding GPS data improves real-life PA type classification performance if combined data are used for training the model. Moreover, the knee-model provides the minimal device configuration with reliable accuracy for detecting real-life PA types.
本文旨在探讨全球定位系统(GPS)传感器数据在现实生活中体力活动(PA)类型检测中的作用。33 名年轻参与者在五个身体部位佩戴了包括 GPS 和加速度计传感器在内的设备,并在两种方案(半结构化和现实生活)中进行了日常 PA:一种是使用半结构化(方案 1)和组合(半结构化+现实生活)数据(方案 2)的所有传感器数据的通用随机森林(RF)模型,另一种是使用每个传感器位置的数据的五个单独 RF 模型。结果表明,一般来说,将 GPS 特征(速度和海拔差)添加到加速度计数据中可以提高分类性能,特别是对于检测非水平和水平行走。评估模型在现实生活数据上的可转移性表明,方案 2 的模型具有很强的可转移性,特别是在将 GPS 数据添加到训练数据时。比较个别模型表明,在两种情况下,膝盖模型提供了与通用模型相当的分类性能(高于 80%)。总之,如果使用组合数据来训练模型,添加 GPS 数据可以提高现实生活 PA 类型的分类性能。此外,膝盖模型提供了最小的设备配置,具有可靠的准确性,可用于检测现实生活中的 PA 类型。