Suppr超能文献

竞争性微阵列筛选揭示了DHX15 RNA G-四链体的功能性配体。

Competitive Microarray Screening Reveals Functional Ligands for the DHX15 RNA G-Quadruplex.

作者信息

Prestwood Peri R, Yang Mo, Lewis Grace V, Balaratnam Sumirtha, Yazdani Kamyar, Schneekloth John S

机构信息

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States.

出版信息

ACS Med Chem Lett. 2024 May 2;15(6):814-821. doi: 10.1021/acsmedchemlett.3c00574. eCollection 2024 Jun 13.

Abstract

RNAs are increasingly considered valuable therapeutic targets, and the development of methods to identify and validate both RNA targets and ligands is more important than ever. Here, we utilized a bioinformatic approach to identify a hairpin-containing RNA G-quadruplex (rG4) in the 5' untranslated region (5' UTR) of mRNA. By using a novel competitive small molecule microarray (SMM) approach, we identified a compound that specifically binds to the rG4 ( = 12.6 ± 1.0 μM). This rG4 directly impacts translation of a reporter mRNA , and binding of our compound () to the structure inhibits translation up to 57% (IC = 22.9 ± 3.8 μM). This methodology allowed us to identify and target the mRNA of a cancer-relevant helicase with no known inhibitors. Our target identification method and the novelty of our screening approach make our work informative for future development of novel small molecule cancer therapeutics for RNA targets.

摘要

RNA越来越被视为有价值的治疗靶点,开发识别和验证RNA靶点及配体的方法比以往任何时候都更加重要。在此,我们利用生物信息学方法在mRNA的5'非翻译区(5'UTR)中鉴定出一种含发夹结构的RNA G-四链体(rG4)。通过使用一种新型竞争性小分子微阵列(SMM)方法,我们鉴定出一种与rG4特异性结合的化合物(解离常数=12.6±1.0μM)。这种rG4直接影响报告基因mRNA的翻译,我们的化合物与该结构的结合可抑制翻译达57%(半数抑制浓度=22.9±3.8μM)。这种方法使我们能够识别并靶向一种尚无已知抑制剂的与癌症相关的解旋酶的mRNA。我们的靶点识别方法和筛选方法的新颖性使我们的工作对未来针对RNA靶点的新型小分子癌症治疗药物的开发具有参考价值。

相似文献

1
Competitive Microarray Screening Reveals Functional Ligands for the DHX15 RNA G-Quadruplex.
ACS Med Chem Lett. 2024 May 2;15(6):814-821. doi: 10.1021/acsmedchemlett.3c00574. eCollection 2024 Jun 13.
2
An RNA G-Quadruplex Structure within the ADAR 5'UTR Interacts with DHX36 Helicase to Regulate Translation.
Angew Chem Int Ed Engl. 2022 Dec 23;61(52):e202203553. doi: 10.1002/anie.202203553. Epub 2022 Nov 23.
3
The Evolution of G-quadruplex Structure in mRNA Untranslated Region.
Evol Bioinform Online. 2021 Jul 21;17:11769343211035140. doi: 10.1177/11769343211035140. eCollection 2021.
6
G3BP1 binds to guanine quadruplexes in mRNAs to modulate their stabilities.
Nucleic Acids Res. 2021 Nov 8;49(19):11323-11336. doi: 10.1093/nar/gkab873.
7
RNA helicase DDX5 enables STAT1 mRNA translation and interferon signalling in hepatitis B virus replicating hepatocytes.
Gut. 2022 May;71(5):991-1005. doi: 10.1136/gutjnl-2020-323126. Epub 2021 May 21.
8
Investigating the NRAS 5' UTR as a target for small molecules.
Cell Chem Biol. 2023 Jun 15;30(6):643-657.e8. doi: 10.1016/j.chembiol.2023.05.004. Epub 2023 May 30.
9
Targeting a G-quadruplex from let-7e pre-miRNA with small molecules and nucleolin.
J Pharm Biomed Anal. 2022 Jun 5;215:114757. doi: 10.1016/j.jpba.2022.114757. Epub 2022 Apr 7.
10
Ligand screening to pre-miRNA 149 G-quadruplex investigated by molecular dynamics.
J Biomol Struct Dyn. 2020 May;38(8):2276-2286. doi: 10.1080/07391102.2019.1632743. Epub 2019 Jul 5.

引用本文的文献

1
RNA G-quadruplex structure targeting and imaging: recent advances and future directions.
RNA. 2025 Jul 16;31(8):1053-1080. doi: 10.1261/rna.080587.125.
2
The Druggable Transcriptome Project: From Chemical Probes to Precision Medicines.
Biochemistry. 2025 Apr 15;64(8):1647-1661. doi: 10.1021/acs.biochem.5c00006. Epub 2025 Mar 25.
3
A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs.
Molecules. 2024 Aug 1;29(15):3653. doi: 10.3390/molecules29153653.

本文引用的文献

1
Pervasive transcriptome interactions of protein-targeted drugs.
Nat Chem. 2023 Oct;15(10):1374-1383. doi: 10.1038/s41557-023-01309-8. Epub 2023 Aug 31.
2
Development of a highly optimized procedure for the discovery of RNA G-quadruplexes by combining several strategies.
Biochimie. 2023 Nov;214(Pt A):24-32. doi: 10.1016/j.biochi.2023.07.014. Epub 2023 Jul 20.
3
Investigating the NRAS 5' UTR as a target for small molecules.
Cell Chem Biol. 2023 Jun 15;30(6):643-657.e8. doi: 10.1016/j.chembiol.2023.05.004. Epub 2023 May 30.
4
Fragment-Based Approaches to Identify RNA Binders.
J Med Chem. 2023 May 25;66(10):6523-6541. doi: 10.1021/acs.jmedchem.3c00034. Epub 2023 May 15.
5
Machine Learning Informs RNA-Binding Chemical Space.
Angew Chem Int Ed Engl. 2023 Mar 6;62(11):e202211358. doi: 10.1002/anie.202211358. Epub 2023 Feb 6.
6
Discovering riboswitches: the past and the future.
Trends Biochem Sci. 2023 Feb;48(2):119-141. doi: 10.1016/j.tibs.2022.08.009. Epub 2022 Sep 20.
7
Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network.
Nucleic Acids Res. 2022 Sep 9;50(16):9012-9022. doi: 10.1093/nar/gkac687.
8
Targeting RNA structures with small molecules.
Nat Rev Drug Discov. 2022 Oct;21(10):736-762. doi: 10.1038/s41573-022-00521-4. Epub 2022 Aug 8.
9
Small molecule-based detection of non-canonical RNA G-quadruplex structures that modulate protein translation.
Nucleic Acids Res. 2022 Aug 12;50(14):8143-8153. doi: 10.1093/nar/gkac580.
10
Structural Changes in Aptamers are Essential for Synthetic Riboswitch Engineering.
J Mol Biol. 2022 Sep 30;434(18):167631. doi: 10.1016/j.jmb.2022.167631. Epub 2022 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验