Suppr超能文献

机器学习揭示 RNA 结合化学空间。

Machine Learning Informs RNA-Binding Chemical Space.

机构信息

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.

Ladder Therapeutics, USA.

出版信息

Angew Chem Int Ed Engl. 2023 Mar 6;62(11):e202211358. doi: 10.1002/anie.202211358. Epub 2023 Feb 6.

Abstract

Small molecule targeting of RNA has emerged as a new frontier in medicinal chemistry, but compared to the protein targeting literature our understanding of chemical matter that binds to RNA is limited. In this study, we reported Repository Of BInders to Nucleic acids (ROBIN), a new library of nucleic acid binders identified by small molecule microarray (SMM) screening. The complete results of 36 individual nucleic acid SMM screens against a library of 24 572 small molecules were reported (including a total of 1 627 072 interactions assayed). A set of 2 003 RNA-binding small molecules was identified, representing the largest fully public, experimentally derived library of its kind to date. Machine learning was used to develop highly predictive and interpretable models to characterize RNA-binding molecules. This work demonstrates that machine learning algorithms applied to experimentally derived sets of RNA binders are a powerful method to inform RNA-targeted chemical space.

摘要

小分子靶向 RNA 已成为药物化学的一个新前沿,但与靶向蛋白质的文献相比,我们对与 RNA 结合的化学物质的理解还很有限。在这项研究中,我们报告了 Repository Of BInders to Nucleic acids (ROBIN),这是一种通过小分子微阵列 (SMM) 筛选鉴定的新型核酸结合物文库。报告了针对 24572 种小分子文库的 36 个单独核酸 SMM 筛选的完整结果(总共测定了 1627072 个相互作用)。确定了一组 2003 个 RNA 结合小分子,这代表了迄今为止最大的完全公开的、基于实验的同类文库。机器学习被用于开发高度可预测和可解释的模型来描述 RNA 结合分子。这项工作表明,应用于基于实验的 RNA 结合物集合的机器学习算法是一种有前途的方法,可以了解针对 RNA 的化学空间。

相似文献

1
Machine Learning Informs RNA-Binding Chemical Space.
Angew Chem Int Ed Engl. 2023 Mar 6;62(11):e202211358. doi: 10.1002/anie.202211358. Epub 2023 Feb 6.
3
A Machine Learning Method for RNA-Small Molecule Binding Preference Prediction.
J Chem Inf Model. 2024 Oct 14;64(19):7386-7397. doi: 10.1021/acs.jcim.4c01324. Epub 2024 Sep 12.
5
Fluorescence-based investigations of RNA-small molecule interactions.
Methods. 2019 Sep 1;167:54-65. doi: 10.1016/j.ymeth.2019.05.017. Epub 2019 May 23.
6
Discovery of RNA Binding Small Molecules Using Small Molecule Microarrays.
Methods Mol Biol. 2017;1518:157-175. doi: 10.1007/978-1-4939-6584-7_11.
7
Development of a DNA-encoded library screening method "DEL Zipper" to empower the study of RNA-targeted chemical matter.
SLAS Discov. 2025 Mar;31:100204. doi: 10.1016/j.slasd.2024.100204. Epub 2024 Dec 21.
8
Comprehensive Prediction of Molecular Recognition in a Combinatorial Chemical Space Using Machine Learning.
ACS Comb Sci. 2020 Oct 12;22(10):500-508. doi: 10.1021/acscombsci.0c00003. Epub 2020 Aug 17.

引用本文的文献

1
Discovery of RNA-Targeting Small Molecules: Challenges and Future Directions.
MedComm (2020). 2025 Aug 24;6(9):e70342. doi: 10.1002/mco2.70342. eCollection 2025 Sep.
2
Mechanistic studies of small molecule ligands selective to RNA single G bulges.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf559.
3
Structure-informed design of an ultrabright RNA-activated fluorophore.
Nat Chem. 2025 May 28. doi: 10.1038/s41557-025-01832-w.
4
Ligand-binding pockets in RNA and where to find them.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2422346122. doi: 10.1073/pnas.2422346122. Epub 2025 Apr 22.
5
Harnessing Computational Approaches for RNA-Targeted Drug Discovery.
RNA Nanomed. 2024 Dec;1(1):1-15. doi: 10.59566/isrnn.2024.0101001.
6
Ligand-binding pockets in RNA, and where to find them.
bioRxiv. 2025 Mar 15:2025.03.13.643147. doi: 10.1101/2025.03.13.643147.
7
The evolution and application of RNA-focused small molecule libraries.
RSC Chem Biol. 2025 Feb 13;6(4):510-527. doi: 10.1039/d4cb00272e. eCollection 2025 Apr 2.
8
RNA binding proteins (RBPs) on genetic stability and diseases.
Glob Med Genet. 2024 Nov 30;12(1):100032. doi: 10.1016/j.gmg.2024.100032. eCollection 2025 Mar.
9
Advances and Mechanisms of RNA-Ligand Interaction Predictions.
Life (Basel). 2025 Jan 15;15(1):104. doi: 10.3390/life15010104.

本文引用的文献

1
R-BIND 2.0: An Updated Database of Bioactive RNA-Targeting Small Molecules and Associated RNA Secondary Structures.
ACS Chem Biol. 2022 Jun 17;17(6):1556-1566. doi: 10.1021/acschembio.2c00224. Epub 2022 May 20.
2
Quantitative Structure-Activity Relationship (QSAR) Study Predicts Small-Molecule Binding to RNA Structure.
J Med Chem. 2022 May 26;65(10):7262-7277. doi: 10.1021/acs.jmedchem.2c00254. Epub 2022 May 6.
3
Dysregulation of Hepatitis B Virus Nucleocapsid Assembly in vitro by RNA-binding Small Ligands.
J Mol Biol. 2022 May 30;434(10):167557. doi: 10.1016/j.jmb.2022.167557. Epub 2022 Mar 24.
4
Author Correction: Trends in kinase drug discovery: targets, indications and inhibitor design.
Nat Rev Drug Discov. 2021 Oct;20(10):798. doi: 10.1038/s41573-021-00303-4.
5
Targeting a noncanonical, hairpin-containing G-quadruplex structure from the MYCN gene.
Nucleic Acids Res. 2021 Aug 20;49(14):7856-7869. doi: 10.1093/nar/gkab594.
6
Advances in targeting 'undruggable' transcription factors with small molecules.
Nat Rev Drug Discov. 2021 Sep;20(9):669-688. doi: 10.1038/s41573-021-00199-0. Epub 2021 May 18.
7
Antisense technology: A review.
J Biol Chem. 2021 Jan-Jun;296:100416. doi: 10.1016/j.jbc.2021.100416. Epub 2021 Feb 16.
8
Systematic analysis of the interactions driving small molecule-RNA recognition.
RSC Med Chem. 2020 Jun 4;11(7):802-813. doi: 10.1039/d0md00167h. eCollection 2020 Jul 1.
9
Targeting RNA with small molecules: from fundamental principles towards the clinic.
Chem Soc Rev. 2021 Mar 1;50(4):2224-2243. doi: 10.1039/d0cs01261k.
10
Visualization of very large high-dimensional data sets as minimum spanning trees.
J Cheminform. 2020 Feb 12;12(1):12. doi: 10.1186/s13321-020-0416-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验