Suppr超能文献

Fitbit测量短时间步数和久坐行为的准确性:验证、敏感性和特异性研究。

Fitbit's accuracy to measure short bouts of stepping and sedentary behaviour: validation, sensitivity and specificity study.

作者信息

Delobelle Julie, Lebuf Elien, Dyck Delfien Van, Compernolle Sofie, Janek Michael, Backere Femke De, Vetrovsky Tomas

机构信息

Physical Activity & Health, Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.

Research Foundation Flanders (FWO), Brussels, Belgium.

出版信息

Digit Health. 2024 Jun 17;10:20552076241262710. doi: 10.1177/20552076241262710. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

This study aims to assess the suitability of Fitbit devices for real-time physical activity (PA) and sedentary behaviour (SB) monitoring in the context of just-in-time adaptive interventions (JITAIs) and event-based ecological momentary assessment (EMA) studies.

METHODS

Thirty-seven adults (18-65 years) and 32 older adults (65+) from Belgium and the Czech Republic wore four devices simultaneously for 3 days: two Fitbit models on the wrist, an ActiGraph GT3X+ at the hip and an ActivPAL at the thigh. Accuracy measures included mean (absolute) error and mean (absolute) percentage error. Concurrent validity was assessed using Lin's concordance correlation coefficient and Bland-Altman analyses. Fitbit's sensitivity and specificity for detecting stepping events across different thresholds and durations were calculated compared to ActiGraph, while ROC curve analyses identified optimal Fitbit thresholds for detecting sedentary events according to ActivPAL.

RESULTS

Fitbits demonstrated validity in measuring steps on a short time scale compared to ActiGraph. Except for stepping above 120 steps/min in older adults, both Fitbit models detected stepping bouts in adults and older adults with sensitivities and specificities exceeding 87% and 97%, respectively. Optimal cut-off values for identifying prolonged sitting bouts achieved sensitivities and specificities greater than 93% and 89%, respectively.

CONCLUSIONS

This study provides practical insights into using Fitbit devices in JITAIs and event-based EMA studies among adults and older adults. Fitbits' reasonable accuracy in detecting short bouts of stepping and SB makes them suitable for triggering JITAI prompts or EMA questionnaires following a PA or SB event of interest.

摘要

目的

本研究旨在评估Fitbit设备在即时自适应干预(JITAIs)和基于事件的生态瞬时评估(EMA)研究背景下,用于实时身体活动(PA)和久坐行为(SB)监测的适用性。

方法

来自比利时和捷克共和国的37名成年人(18 - 65岁)和32名老年人(65岁以上)同时佩戴四种设备,持续3天:两只手腕上各佩戴一个Fitbit型号设备,髋部佩戴一个ActiGraph GT3X +设备,大腿佩戴一个ActivPAL设备。准确性指标包括平均(绝对)误差和平均(绝对)百分比误差。使用林氏一致性相关系数和布兰德 - 奥特曼分析评估同时效度。将Fitbit在不同阈值和持续时间下检测步数事件的敏感性和特异性与ActiGraph进行比较,同时通过ROC曲线分析确定根据ActivPAL检测久坐事件的最佳Fitbit阈值。

结果

与ActiGraph相比,Fitbit在短时间尺度上测量步数时表现出有效性。除了老年人中每分钟步数超过120步的情况外,两种Fitbit型号在成年人和老年人中检测步数发作的敏感性和特异性分别超过87%和97%。识别长时间坐着发作的最佳临界值的敏感性和特异性分别大于93%和89%。

结论

本研究为在成年人和老年人的JITAIs和基于事件的EMA研究中使用Fitbit设备提供了实用见解。Fitbit在检测短时间步数发作和久坐行为方面具有合理的准确性,使其适合在感兴趣的PA或SB事件之后触发JITAI提示或EMA问卷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d18/11185038/19f25f834258/10.1177_20552076241262710-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验