Christel Henriette, Bruelheide Helge, Cesarz Simone, Eisenhauer Nico, Hähn Georg J A, Beugnon Rémy
German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.
Institute of Biology, Leipzig University Leipzig Germany.
Ecol Evol. 2024 Jun 18;14(6):e11530. doi: 10.1002/ece3.11530. eCollection 2024 Jun.
The capacity of forests to sequester carbon in both above- and belowground compartments is a crucial tool to mitigate rising atmospheric carbon concentrations. Belowground carbon storage in forests is strongly linked to soil microbial communities that are the key drivers of soil heterotrophic respiration, organic matter decomposition and thus nutrient cycling. However, the relationships between tree diversity and soil microbial properties such as biomass and respiration remain unclear with inconsistent findings among studies. It is unknown so far how the spatial configuration and soil depth affect the relationship between tree richness and microbial properties. Here, we studied the spatial distribution of soil microbial properties in the context of a tree diversity experiment by measuring soil microbial biomass and respiration in subtropical forests (BEF-China experiment). We sampled soil cores at two depths at five locations along a spatial transect between the trees in mono- and hetero-specific tree pairs of the native deciduous species and . Our analyses showed decreasing soil microbial biomass and respiration with increasing soil depth and distance from the tree in mono-specific tree pairs. We calculated belowground overyielding of soil microbial biomass and respiration - which is higher microbial biomass or respiration than expected from the monocultures - and analysed the distribution patterns along the transect. We found no general overyielding across all sampling positions and depths. Yet, we encountered a spatial pattern of microbial overyielding with a significant microbial overyielding close to trees and microbial underyielding close to trees. We found similar spatial patterns across microbial properties and depths that only differed in the strength of their effects. Our results highlight the importance of small-scale variations of tree-tree interaction effects on soil microbial communities and functions and are calling for better integration of within-plot variability to understand biodiversity-ecosystem functioning relationships.
森林在地上和地下部分固碳的能力是缓解大气中碳浓度上升的关键手段。森林地下碳储存与土壤微生物群落密切相关,而土壤微生物群落是土壤异养呼吸、有机质分解以及养分循环的关键驱动因素。然而,树木多样性与土壤微生物特性(如生物量和呼吸作用)之间的关系仍不明确,各研究结果也不一致。目前尚不清楚空间配置和土壤深度如何影响树木丰富度与微生物特性之间的关系。在此,我们通过测量亚热带森林中的土壤微生物生物量和呼吸作用(中国生物多样性与生态系统功能实验),在树木多样性实验的背景下研究了土壤微生物特性的空间分布。我们在本地落叶树种单种和混种树木对之间的空间样带上的五个位置,于两个深度采集了土壤芯。我们的分析表明,在单种树木对中,随着土壤深度增加以及与树木距离增大,土壤微生物生物量和呼吸作用降低。我们计算了土壤微生物生物量和呼吸作用的地下超产(即高于单作预期的微生物生物量或呼吸作用),并分析了样带上的分布模式。我们发现在所有采样位置和深度并非普遍存在超产现象。然而,我们遇到了微生物超产的空间模式,靠近 树处有显著的微生物超产,靠近 树处则有微生物减产。我们在不同微生物特性和深度上发现了类似的空间模式,只是其影响强度有所不同。我们的结果突出了树木间相互作用效应的小尺度变化对土壤微生物群落和功能的重要性,并呼吁更好地整合样地内的变异性,以理解生物多样性与生态系统功能的关系。