Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China.
Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong Province, P. R. China.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae111.
Selenocysteine (Sec) is encoded by the UGA codon that normally functions as a stop signal and is specifically incorporated into selenoproteins via a unique recoding mechanism. The translational recoding of UGA as Sec is directed by an unusual RNA structure, the SECIS element. Although archaea and eukaryotes adopt similar Sec encoding machinery, the SECIS elements have no similarities to each other with regard to sequence and structure. We analyzed >400 Asgard archaeal genomes to examine the occurrence of both Sec encoding system and selenoproteins in this archaeal superphylum, the closest prokaryotic relatives of eukaryotes. A comprehensive map of Sec utilization trait has been generated, providing the most detailed understanding of the use of this nonstandard amino acid in Asgard archaea so far. By characterizing the selenoproteomes of all organisms, several selenoprotein-rich phyla and species were identified. Most Asgard archaeal selenoprotein genes possess eukaryotic SECIS-like structures with varying degrees of diversity. Moreover, euryarchaeal SECIS elements might originate from Asgard archaeal SECIS elements via lateral gene transfer, indicating a complex and dynamic scenario of the evolution of SECIS element within archaea. Finally, a roadmap for the transition of eukaryotic SECIS elements from archaea was proposed, and selenophosphate synthetase may serve as a potential intermediate for the generation of ancestral eukaryotic SECIS element. Our results offer new insights into a deeper understanding of the evolution of Sec insertion machinery.
硒代半胱氨酸(Sec)由 UGA 密码子编码,该密码子通常作为终止信号发挥作用,并且通过独特的重编码机制专门掺入硒蛋白中。UGA 作为 Sec 的翻译重编码由不寻常的 RNA 结构 SECIS 元件指导。尽管古菌和真核生物采用类似的 Sec 编码机制,但 SECIS 元件在序列和结构上彼此没有相似之处。我们分析了 >400 个 Asgard 古菌基因组,以研究这个真核生物超门(真核生物最接近的原核亲属)中 Sec 编码系统和硒蛋白的发生情况。生成了 Sec 利用性状的综合图谱,迄今为止,提供了对 Asgard 古菌中这种非标准氨基酸使用的最详细理解。通过对所有生物体的硒蛋白组进行特征分析,鉴定了几个富含硒蛋白的门和物种。大多数 Asgard 古菌的硒蛋白基因都具有真核 SECIS 样结构,具有不同程度的多样性。此外,真核 SECIS 元件可能通过横向基因转移起源于 Asgard 古菌 SECIS 元件,表明 SECIS 元件在古菌中的进化是复杂和动态的。最后,提出了真核 SECIS 元件从古菌过渡的路线图,并且硒代磷酸合成酶可能作为祖先真核 SECIS 元件生成的潜在中间产物。我们的结果为深入了解 Sec 插入机制的进化提供了新的见解。