The Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan 430030, Hubei Province, People's Republic of China.
Radiology Department, Wuhan Fourth Hospital, No. 473 Hanzheng Street, Wuhan 430030, Hubei Province, People's Republic of China.
Eur J Radiol. 2024 Aug;177:111563. doi: 10.1016/j.ejrad.2024.111563. Epub 2024 Jun 10.
This study investigated the use of radiomics for diagnosing early-stage osteonecrosis of the femoral head (ONFH) by extracting features from multiple MRI sequences and constructing predictive models.
We conducted a retrospective review, collected MR images of early-stage ONFH (102 from institution A and 20 from institution B) and healthy femoral heads (102 from institution A and 20 from institution B) from two institutions. We extracted radiomics features, handled batch effects using Combat, and normalized features using z-score. We employed the Least absolute shrinkage and selection operator (LASSO) algorithm, along with Max-Relevance and Min-Redundancy (mRMR), to select optimal features for constructing radiomics models based on single, double, and multi-sequence MRI data. We evaluated performance using receiver operating characteristic (ROC) and precision-recall (PR) curves, and compared area under curve of ROC (AUC-ROC) values with the DeLong test. Additionally, we studied the diagnostic performance of the multi-sequence radiomics model and radiologists, compared the diagnostic outcomes of the model and radiologists using the Fisher exact test.
We studied 122 early-stage ONFH and 122 normal femoral heads. The multi-sequence model exhibited the best diagnostic performance among all models (AUC-ROC, PR-AUC for training set: 0.96, 0.961; validation set: 0.96, 0.97; test set: 0.94, 0.94), and it outperformed three resident radiologists on the external testing group with an accuracy of 87.5 %, sensitivity of 85.00 %, and specificity of 90.00 % (p < 0.01), highlighting the robustness of our findings.
Our study underscored the novelty of the multi-sequence radiomics model in diagnosing early-stage ONFH. By leveraging features extracted from multiple imaging sequences, this approach demonstrated high efficacy, indicating its potential to advance early diagnosis for ONFH. These findings provided important guidance for enhancing early diagnosis of ONFH through radiomics methods, offering new avenues and possibilities for clinical practice and patient care.
本研究通过从多个 MRI 序列中提取特征并构建预测模型,探讨放射组学在早期股骨头坏死(ONFH)诊断中的应用。
我们进行了一项回顾性研究,收集了来自两个机构的早期 ONFH(机构 A 共 102 例,机构 B 共 20 例)和健康股骨头(机构 A 共 102 例,机构 B 共 20 例)的 MR 图像。我们提取了放射组学特征,使用 Combat 处理批处理效应,并使用 z 分数对特征进行标准化。我们使用最小绝对收缩和选择算子(LASSO)算法,以及最大相关性和最小冗余(mRMR),根据单、双和多序列 MRI 数据,选择最优的放射组学模型特征。我们使用接收器操作特征(ROC)和精度-召回(PR)曲线来评估性能,并使用 DeLong 检验比较 ROC 曲线下面积(AUC-ROC)值。此外,我们研究了多序列放射组学模型的诊断性能,并比较了模型和放射科医生的诊断结果,使用 Fisher 精确检验进行比较。
我们研究了 122 例早期 ONFH 和 122 例正常股骨头。多序列模型在所有模型中表现出最佳的诊断性能(训练集的 AUC-ROC、PR-AUC:0.96、0.961;验证集:0.96、0.97;测试集:0.94、0.94),并且在外部测试组中,它的准确性为 87.5%,灵敏度为 85.00%,特异性为 90.00%(p<0.01),优于三位住院放射科医生,突出了我们研究结果的稳健性。
本研究强调了多序列放射组学模型在诊断早期 ONFH 中的新颖性。通过利用从多个成像序列中提取的特征,该方法表现出高效的疗效,表明其在推进 ONFH 的早期诊断方面具有潜力。这些发现为通过放射组学方法增强早期 ONFH 的诊断提供了重要指导,为临床实践和患者护理提供了新的途径和可能性。