Jaradat Jaber H, Nashwan Abdulqadir J
Faculty of Medicine, Mutah University, Al-Karak 61101, Jordan.
Department of Nursing, Hamad Medical Corporation, Doha 3050, Qatar.
World J Clin Cases. 2024 Jun 16;12(17):2921-2924. doi: 10.12998/wjcc.v12.i17.2921.
Artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL) techniques, such as convolutional neural networks (CNNs), have emerged as transformative technologies with vast potential in healthcare. Body iron load is usually assessed using slightly invasive blood tests (serum ferritin, serum iron, and serum transferrin). Serum ferritin is widely used to assess body iron and drive medical management; however, it is an acute phase reactant protein offering wrong interpretation in the setting of inflammation and distressed patients. Magnetic resonance imaging is a non-invasive technique that can be used to assess liver iron. The ML and DL algorithms can be used to enhance the detection of minor changes. However, a lack of open-access datasets may delay the advancement of medical research in this field. In this letter, we highlight the importance of standardized datasets for advancing AI and CNNs in medical imaging. Despite the current limitations, embracing AI and CNNs holds promise in revolutionizing disease diagnosis and treatment.
人工智能(AI),尤其是机器学习(ML)和深度学习(DL)技术,如卷积神经网络(CNN),已成为具有巨大潜力的变革性技术,在医疗保健领域有着广阔应用前景。人体铁负荷通常通过轻微侵入性的血液检测(血清铁蛋白、血清铁和血清转铁蛋白)来评估。血清铁蛋白被广泛用于评估人体铁含量并指导医疗管理;然而,它是一种急性期反应蛋白,在炎症和病情危急的患者中会给出错误的解读。磁共振成像是一种可用于评估肝脏铁含量的非侵入性技术。ML和DL算法可用于增强对微小变化的检测。然而,缺乏开放获取的数据集可能会延迟该领域医学研究的进展。在这封信中,我们强调了标准化数据集对于推动医学成像领域的AI和CNN发展的重要性。尽管存在当前的局限性,但采用AI和CNN有望彻底改变疾病的诊断和治疗方式。