Suppr超能文献

人工智能在肝脏医学影像中的应用。

Artificial intelligence in medical imaging of the liver.

机构信息

Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.

Department of Ultrasound, Tianyou Hospital Affiliated to Wuhan University of Technology, Wuhan 430030, Hubei Province, China.

出版信息

World J Gastroenterol. 2019 Feb 14;25(6):672-682. doi: 10.3748/wjg.v25.i6.672.

Abstract

Artificial intelligence (AI), particularly deep learning algorithms, is gaining extensive attention for its excellent performance in image-recognition tasks. They can automatically make a quantitative assessment of complex medical image characteristics and achieve an increased accuracy for diagnosis with higher efficiency. AI is widely used and getting increasingly popular in the medical imaging of the liver, including radiology, ultrasound, and nuclear medicine. AI can assist physicians to make more accurate and reproductive imaging diagnosis and also reduce the physicians' workload. This article illustrates basic technical knowledge about AI, including traditional machine learning and deep learning algorithms, especially convolutional neural networks, and their clinical application in the medical imaging of liver diseases, such as detecting and evaluating focal liver lesions, facilitating treatment, and predicting liver treatment response. We conclude that machine-assisted medical services will be a promising solution for future liver medical care. Lastly, we discuss the challenges and future directions of clinical application of deep learning techniques.

摘要

人工智能(AI),特别是深度学习算法,在图像识别任务中表现出色,引起了广泛关注。它们可以自动对复杂的医学图像特征进行定量评估,并以更高的效率实现更高的诊断准确性。AI 在肝脏的医学影像学中得到了广泛的应用和日益普及,包括放射学、超声和核医学。AI 可以帮助医生做出更准确和可重复的影像学诊断,同时减轻医生的工作量。本文介绍了 AI 的基本技术知识,包括传统的机器学习和深度学习算法,特别是卷积神经网络,以及它们在肝脏疾病的医学影像学中的临床应用,例如检测和评估局灶性肝病变,辅助治疗以及预测肝脏治疗反应。我们得出结论,机器辅助医疗服务将是未来肝脏医疗保健的一个有前途的解决方案。最后,我们讨论了深度学习技术临床应用的挑战和未来方向。

相似文献

1
Artificial intelligence in medical imaging of the liver.
World J Gastroenterol. 2019 Feb 14;25(6):672-682. doi: 10.3748/wjg.v25.i6.672.
2
Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging.
J Med Imaging Radiat Sci. 2019 Dec;50(4):477-487. doi: 10.1016/j.jmir.2019.09.005. Epub 2019 Oct 7.
4
Artificial intelligence in medical imaging.
Magn Reson Imaging. 2020 May;68:A1-A4. doi: 10.1016/j.mri.2019.12.006. Epub 2019 Dec 16.
5
How Cognitive Machines Can Augment Medical Imaging.
AJR Am J Roentgenol. 2019 Jan;212(1):9-14. doi: 10.2214/AJR.18.19914. Epub 2018 Nov 13.
6
Artificial intelligence in breast ultrasound.
World J Radiol. 2019 Feb 28;11(2):19-26. doi: 10.4329/wjr.v11.i2.19.
7
Deep learning with convolutional neural network in radiology.
Jpn J Radiol. 2018 Apr;36(4):257-272. doi: 10.1007/s11604-018-0726-3. Epub 2018 Mar 1.
8
Artificial intelligence in thyroid ultrasound.
Front Oncol. 2023 May 12;13:1060702. doi: 10.3389/fonc.2023.1060702. eCollection 2023.
9
Artificial intelligence in radiology.
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
10
Intelligent Imaging: Anatomy of Machine Learning and Deep Learning.
J Nucl Med Technol. 2019 Dec;47(4):273-281. doi: 10.2967/jnmt.119.232470. Epub 2019 Aug 10.

引用本文的文献

1
Motor symptoms of Parkinson's disease: critical markers for early AI-assisted diagnosis.
Front Aging Neurosci. 2025 Jul 18;17:1602426. doi: 10.3389/fnagi.2025.1602426. eCollection 2025.
3
When liver disease diagnosis encounters deep learning: Analysis, challenges, and prospects.
ILIVER. 2023 Mar 4;2(1):73-87. doi: 10.1016/j.iliver.2023.02.002. eCollection 2023 Mar.
4
Artificial intelligence-based ultrasound imaging technologies for hepatic diseases.
ILIVER. 2022 Nov 16;1(4):252-264. doi: 10.1016/j.iliver.2022.11.001. eCollection 2022 Dec.
5
Outcome prediction for cholangiocarcinoma prognosis: Embracing the machine learning era.
World J Gastroenterol. 2025 Jun 7;31(21):106808. doi: 10.3748/wjg.v31.i21.106808.
6
Research advances in evaluation methods for neoadjuvant therapy of tumors.
Front Oncol. 2025 May 22;15:1580360. doi: 10.3389/fonc.2025.1580360. eCollection 2025.
9
IR-GPT: AI Foundation Models to Optimize Interventional Radiology.
Cardiovasc Intervent Radiol. 2025 May;48(5):585-592. doi: 10.1007/s00270-024-03945-0. Epub 2025 Mar 26.

本文引用的文献

1
Anticipating Where People will Look Using Adversarial Networks.
IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1783-1796. doi: 10.1109/TPAMI.2018.2871688. Epub 2018 Sep 24.
2
Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT.
Med Phys. 2018 Oct;45(10):4763-4774. doi: 10.1002/mp.13122. Epub 2018 Sep 10.
3
Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images.
Int J Comput Assist Radiol Surg. 2018 Dec;13(12):1895-1903. doi: 10.1007/s11548-018-1843-2. Epub 2018 Aug 9.
4
Convolutional neural networks: an overview and application in radiology.
Insights Imaging. 2018 Aug;9(4):611-629. doi: 10.1007/s13244-018-0639-9. Epub 2018 Jun 22.
5
Artificial intelligence in radiology.
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
6
Deep learning for staging liver fibrosis on CT: a pilot study.
Eur Radiol. 2018 Nov;28(11):4578-4585. doi: 10.1007/s00330-018-5499-7. Epub 2018 May 14.
8
Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey.
Biomed Res Int. 2018 Mar 4;2018:5137904. doi: 10.1155/2018/5137904. eCollection 2018.
9
Is pathology prepared for the adoption of artificial intelligence?
Cancer Cytopathol. 2018 Jun;126(6):373-375. doi: 10.1002/cncy.21994. Epub 2018 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验