Parham Elahe, Rousseau Antoine, Quémener Mireille, Parent Martin, Côté Daniel C
CERVO Brain Research Center, Québec City, Québec, Canada.
Université Laval, Centre d'optique, photonique et laser, Québec City, Québec, Canada.
Neurophotonics. 2024 Apr;11(2):025007. doi: 10.1117/1.NPh.11.2.025007. Epub 2024 Jun 19.
Raman spectroscopy is a valuable technique for tissue identification, but its conventional implementation is hindered by low efficiency due to scattering. Addressing this limitation, we are further developing the wavelength-swept Raman spectroscopy approach.
We aim to enhance Raman signal detection by employing a laser capable of sweeping over a wide wavelength range to sequentially excite tissue with different wavelengths, paired with a photodetector featuring a fixed narrow-bandpass filter for collecting the Raman signal at a specific wavelength.
We experimentally validate our technique using a fiber-based swept-source Raman spectroscopy setup. In addition, simulations are conducted to assess the efficacy of our approach in comparison with conventional spectrometer-based Raman spectroscopy.
Our simulations reveal that the wavelength-swept configuration leads to a significantly stronger signal compared with conventional spectrometer-based Raman spectroscopy. Experimentally, our setup demonstrates an improvement of at least 200× in photon detection compared with the spectrometer-based setup. Furthermore, data acquired from different regions of a fixed monkey brain using our technique achieves 99% accuracy in classification via -nearest neighbor analysis.
Our study showcases the potential of wavelength-swept Raman spectroscopy for tissue identification, particularly in highly scattering media, such as the brain. The developed technique offers enhanced signal detection capabilities, paving the way for future applications in tissue characterization.
拉曼光谱是一种用于组织识别的重要技术,但其传统应用因散射导致效率低下而受到阻碍。为解决这一局限性,我们正在进一步开发扫频拉曼光谱方法。
我们旨在通过使用能够在宽波长范围内扫描的激光来依次用不同波长激发组织,并结合配备固定窄带通滤波器以在特定波长收集拉曼信号的光电探测器,来增强拉曼信号检测。
我们使用基于光纤的扫频光源拉曼光谱装置对我们的技术进行实验验证。此外,进行模拟以评估我们的方法与传统基于光谱仪的拉曼光谱相比的效果。
我们的模拟表明,与传统基于光谱仪的拉曼光谱相比,扫频配置可产生显著更强的信号。在实验中,我们的装置与基于光谱仪的装置相比,在光子检测方面显示出至少200倍的改进。此外,使用我们的技术从固定猴子大脑的不同区域获取的数据通过k近邻分析在分类中达到了99%的准确率。
我们的研究展示了扫频拉曼光谱在组织识别方面的潜力,特别是在高度散射的介质如大脑中。所开发的技术提供了增强的信号检测能力,为未来在组织表征中的应用铺平了道路。