Suppr超能文献

布里渊球下方的散度以及引力场球谐级数近似中预测误差的现象学。

Divergence beneath the Brillouin sphere and the phenomenology of prediction error in spherical harmonic series approximations of the gravitational field.

作者信息

Bevis M, Ogle C, Costin O, Jekeli C, Costin R D, Guo J, Fowler J, Dunne G V, Shum C K, Snow K

机构信息

Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, OH, United States of America.

Department of Mathematics, The Ohio State University, Columbus, OH, United States of America.

出版信息

Rep Prog Phys. 2024 Jun 20;87(7). doi: 10.1088/1361-6633/ad44d5.

Abstract

The Brillouin sphere is defined as the smallest sphere, centered at the origin of the geocentric coordinate system, that incorporates all the condensed matter composing the planet. The Brillouin sphere touches the Earth at a single point, and the radial line that begins at the origin and passes through that point is called the singular radial line. For about 60 years there has been a persistent anxiety about whether or not a spherical harmonic (SH) expansion of the external gravitational potential,, will converge beneath the Brillouin sphere. Recently, it was proven that the probability of such convergence is zero. One of these proofs provided an asymptotic relation, called Costin's formula, for the upper bound,, on the absolute value of the prediction error,, of a SH series model,VN(θ,λ,r), truncated at some maximum degree,N=nmax. When the SH series is restricted to (or projected onto) a particular radial line, it reduces to a Taylor series (TS) in1/r. Costin's formula isEN≃BN-b(R/r)N, whereis the radius of the Brillouin sphere. This formula depends on two positive parameters:, which controls the decay of error amplitude as a function ofwhenis fixed, and a scale factor. We show here that Costin's formula derives from a similar asymptotic relation for the upper bound,on the absolute value of the TS coefficients,, for the same radial line. This formula,An≃Kn-k, depends on degree,, and two positive parameters,and, that are analogous toand. We use synthetic planets, for which we can compute the potential,, and also the radial component of gravitational acceleration,gr=∂V/∂r, to hundreds of significant digits, to validate both of these asymptotic formulas. Let superscriptrefer to asymptotic parameters associated with the coefficients and prediction errors for gravitational potential, and superscriptto the coefficients and predictions errors associated with. For polyhedral planets of uniform density we show thatbV=kV=7/2andbg=kg=5/2almost everywhere. We show that the frequency of oscillation (around zero) of the TS coefficients and the series prediction errors, for a given radial line, is controlled by the geocentric angle,, between that radial line and the singular radial line. We also derive useful identities connectingKV,BV,Kg, and. These identities are expressed in terms of quotients of the various scale factors. The only other quantities involved in these identities areand. The phenomenology of 'series divergence' and prediction error (when < ) can be described as a function of the truncation degree,, or the depth,, beneath the Brillouin sphere. For a fixedr⩽R, asincreases from very low values, the upper error boundshrinks until it reaches its minimum (best) value whenreaches some particular or optimum value,Nopt. WhenN>Nopt, prediction error grows ascontinues to increase. Eventually, whenN≫Nopt, prediction errors increase exponentially with rising. If we fix the value ofand allowR/rto vary, then we find that prediction error in free space beneath the Brillouin sphere increases exponentially with depth,, beneath the Brillouin sphere. Becausebg=bV-1everywhere, divergence driven prediction error intensifies more rapidly forthan for, both in terms of its dependence onand. If we fix bothand, and focus on the 'lateral' variations in prediction error, we observe that divergence and prediction error tend to increase (as does) as we approach high-amplitude topography.

摘要

布里渊球被定义为以地心坐标系原点为中心的最小球体,它包含了构成行星的所有凝聚物质。布里渊球与地球仅在一个点相切,从原点出发并穿过该点的径向线称为奇异径向线。大约60年来,人们一直持续担忧外部引力势(V)的球谐(SH)展开式在布里渊球下方是否会收敛。最近,已证明这种收敛的概率为零。其中一个证明给出了一个渐近关系,称为科斯廷公式,用于截断到某个最大阶数(N = n_{max})的SH级数模型(V_N(\theta,\lambda,r))的预测误差(E_N)的绝对值的上界(B_N)。当SH级数限制在(或投影到)一条特定的径向线上时,它会简化为(1/r)的泰勒级数(TS)。科斯廷公式为(E_N\approx B_N - b(R/r)^N),其中(R)是布里渊球的半径。这个公式取决于两个正参数:当(N)固定时,控制误差幅度随(r)衰减的(b),以及一个比例因子。我们在此表明,科斯廷公式源于同一径向线的TS系数(A_n)的绝对值的上界(K_N)的类似渐近关系。这个公式(A_n\approx K_n - k),取决于阶数(n),以及两个类似于(b)和(R)的正参数(k)和(K)。我们使用合成行星,对于这些行星,我们可以将引力势(V)以及引力加速度的径向分量(g_r = \partial V / \partial r)计算到数百位有效数字,以验证这两个渐近公式。令上标(V)表示与引力势的系数和预测误差相关的渐近参数,上标(g)表示与(g_r)相关的系数和预测误差。对于密度均匀的多面体行星,我们表明几乎在所有地方(b_V = k_V = 7/2)且(b_g = k_g = 5/2)。我们表明,对于给定的径向线,TS系数和级数预测误差(围绕零)的振荡频率由该径向线与奇异径向线之间的地心角(\psi)控制。我们还推导了连接(K_V)、(B_V)、(K_g)和(B_g)的有用恒等式。这些恒等式用各种比例因子的商来表示。这些恒等式中涉及的唯一其他量是(\psi)和(r)。“级数发散”和预测误差(当(r < R)时)的现象可以描述为截断阶数(N)或布里渊球下方深度(z = R - r)的函数。对于固定的(r\leq R),当(N)从非常低的值增加时,误差上界会缩小,直到(N)达到某个特定或最佳值(N_{opt})时达到其最小值(最佳)。当(N > N_{opt})时,随着(N)继续增加,预测误差会增大。最终,当(N\gg N_{opt})时,预测误差随着(z)的增加呈指数增长。如果我们固定(N)的值并允许(R/r)变化,那么我们发现在布里渊球下方的自由空间中,预测误差随着布里渊球下方深度(z)呈指数增加。因为在所有地方(b_g = b_V - 1),无论是就其对(N)还是(z)的依赖性而言,由发散驱动的预测误差对于(g_r)比对(V)增长得更快。如果我们同时固定(N)和(r),并关注预测误差的“横向”变化,我们会观察到,当我们接近高振幅地形时,发散和预测误差往往会增加(与(\psi)一样)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验