Suppr超能文献

基于元学习的针对不同退化情况的盲图像超分辨率方法。

Meta-learning based blind image super-resolution approach to different degradations.

作者信息

Yang Zhixiong, Xia Jingyuan, Li Shengxi, Liu Wende, Zhi Shuaifeng, Zhang Shuanghui, Liu Li, Fu Yaowen, Gündüz Deniz

机构信息

College of Electronic Engineering, National University of Defense Technology, Changsha, 410073, China.

College of Electronic Engineering, Beihang University, Beijing, 100191, China.

出版信息

Neural Netw. 2024 Oct;178:106429. doi: 10.1016/j.neunet.2024.106429. Epub 2024 Jun 3.

Abstract

Although recent studies on blind single image super-resolution (SISR) have achieved significant success, most of them typically require supervised training on synthetic low resolution (LR)-high resolution (HR) paired images. This leads to re-training necessity for different degradations and restricted applications in real-world scenarios with unfavorable inputs. In this paper, we propose an unsupervised blind SISR method with input underlying different degradations, named different degradations blind super-resolution (DDSR). It formulates a Gaussian modeling on blur degradation and employs a meta-learning framework for solving different image degradations. Specifically, a neural network-based kernel generator is optimized by learning from random kernel samples, referred to as random kernel learning. This operation provides effective initialization for blur degradation optimization. At the same time, a meta-learning framework is proposed to resolve multiple degradation modelings on the basis of alternative optimization between blur degradation and image restoration, respectively. Differing from the pre-trained deep-learning methods, the proposed DDSR is implemented in a plug-and-play manner, and is capable of restoring HR image from unfavorable LR input with degradations such as partial coverage, noise addition, and darkening. Extensive simulations illustrate the superior performance of the proposed DDSR approach compared to the state-of-the-arts on public datasets with comparable memory load and time consumption, yet exhibiting better application flexibility and convenience, and significantly better generalization ability towards multiple degradations. Our code is available at https://github.com/XYLGroup/DDSR.

摘要

尽管最近关于盲单图像超分辨率(SISR)的研究取得了显著成功,但其中大多数通常需要对合成的低分辨率(LR)-高分辨率(HR)配对图像进行监督训练。这导致针对不同退化情况需要重新训练,并且在输入条件不利的现实场景中应用受到限制。在本文中,我们提出了一种针对不同退化输入的无监督盲SISR方法,称为不同退化盲超分辨率(DDSR)。它对模糊退化进行高斯建模,并采用元学习框架来解决不同的图像退化问题。具体来说,基于神经网络的内核生成器通过从随机内核样本中学习进行优化,称为随机内核学习。此操作可为模糊退化优化提供有效的初始化。同时,提出了一种元学习框架,分别基于模糊退化和图像恢复之间的交替优化来解决多种退化建模问题。与预训练的深度学习方法不同,所提出的DDSR以即插即用的方式实现,并且能够从不利的带有部分覆盖、添加噪声和变暗等退化的LR输入中恢复HR图像。大量仿真表明,与具有可比内存负载和时间消耗的公共数据集上的现有技术相比,所提出的DDSR方法具有卓越的性能,同时展现出更好的应用灵活性和便利性,以及对多种退化显著更好的泛化能力。我们的代码可在https://github.com/XYLGroup/DDSR获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验