基于流的模型从非配对数据中学习低剂量 CT 衰减

Learning low-dose CT degradation from unpaired data with flow-based model.

机构信息

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China.

Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Med Phys. 2022 Dec;49(12):7516-7530. doi: 10.1002/mp.15886. Epub 2022 Aug 8.

Abstract

BACKGROUND

There has been growing interest in low-dose computed tomography (LDCT) for reducing the X-ray radiation to patients. However, LDCT always suffers from complex noise in reconstructed images. Although deep learning-based methods have shown their strong performance in LDCT denoising, most of them require a large number of paired training data of normal-dose CT (NDCT) images and LDCT images, which are hard to acquire in the clinic. Lack of paired training data significantly undermines the practicability of supervised deep learning-based methods. To alleviate this problem, unsupervised or weakly supervised deep learning-based methods are required.

PURPOSE

We aimed to propose a method that achieves LDCT denoising without training pairs. Specifically, we first trained a neural network in a weakly supervised manner to simulate LDCT images from NDCT images. Then, simulated training pairs could be used for supervised deep denoising networks.

METHODS

We proposed a weakly supervised method to learn the degradation of LDCT from unpaired LDCT and NDCT images. Concretely, LDCT and normal-dose images were fed into one shared flow-based model and projected to the latent space. Then, the degradation between low-dose and normal-dose images was modeled in the latent space. Finally, the model was trained by minimizing the negative log-likelihood loss with no requirement of paired training data. After training, an NDCT image can be input to the trained flow-based model to generate the corresponding LDCT image. The simulated image pairs of NDCT and LDCT can be further used to train supervised denoising neural networks for test.

RESULTS

Our method achieved much better performance on LDCT image simulation compared with the most widely used image-to-image translation method, CycleGAN, according to the radial noise power spectrum. The simulated image pairs could be used for any supervised LDCT denoising neural networks. We validated the effectiveness of our generated image pairs on a classic convolutional neural network, REDCNN, and a novel transformer-based model, TransCT. Our method achieved mean peak signal-to-noise ratio (PSNR) of 24.43dB, mean structural similarity (SSIM) of 0.785 on an abdomen CT dataset, mean PSNR of 33.88dB, mean SSIM of 0.797 on a chest CT dataset, which outperformed several traditional CT denoising methods, the same network trained by CycleGAN-generated data, and a novel transfer learning method. Besides, our method was on par with the supervised networks in terms of visual effects.

CONCLUSION

We proposed a flow-based method to learn LDCT degradation from only unpaired training data. It achieved impressive performance on LDCT synthesis. Next, we could train neural networks with the generated paired data for LDCT denoising. The denoising results are better than traditional and weakly supervised methods, comparable to supervised deep learning methods.

摘要

背景

人们对低剂量计算机断层扫描(LDCT)降低患者 X 射线辐射越来越感兴趣。然而,LDCT 重建图像始终存在复杂的噪声。尽管基于深度学习的方法在 LDCT 去噪方面表现出了强大的性能,但它们大多需要大量正常剂量 CT(NDCT)图像和 LDCT 图像的配对训练数据,这在临床上很难获得。缺乏配对训练数据严重影响了监督式深度学习方法的实用性。因此,需要无监督或弱监督的基于深度学习的方法。

目的

我们旨在提出一种无需训练对即可实现 LDCT 去噪的方法。具体来说,我们首先以弱监督的方式训练神经网络,从 NDCT 图像模拟 LDCT 图像。然后,模拟的训练对可用于监督式深度去噪网络。

方法

我们提出了一种弱监督方法,从非配对的 LDCT 和 NDCT 图像中学习 LDCT 的退化。具体来说,将 LDCT 和正常剂量图像输入到一个共享的流模型中,并将其投影到潜在空间。然后,在潜在空间中对低剂量和正常剂量图像之间的退化进行建模。最后,通过最小化负对数似然损失来训练模型,无需配对训练数据。训练后,可将 NDCT 图像输入到训练好的流模型中生成相应的 LDCT 图像。然后可以进一步使用模拟的 NDCT 和 LDCT 图像对来训练监督式去噪神经网络进行测试。

结果

与最广泛使用的图像到图像转换方法 CycleGAN 相比,我们的方法在 LDCT 图像模拟方面取得了更好的性能,根据径向噪声功率谱。模拟的图像对可用于任何监督式 LDCT 去噪神经网络。我们在经典卷积神经网络 REDCNN 和新型基于转换器的模型 TransCT 上验证了我们生成的图像对的有效性。我们的方法在腹部 CT 数据集上实现了 24.43dB 的平均峰值信噪比(PSNR)、0.785 的平均结构相似性(SSIM),在胸部 CT 数据集上实现了 33.88dB 的平均 PSNR、0.797 的平均 SSIM,优于几种传统 CT 去噪方法、用 CycleGAN 生成的数据训练的相同网络以及一种新的迁移学习方法。此外,我们的方法在视觉效果方面与监督式网络相当。

结论

我们提出了一种从仅非配对训练数据中学习 LDCT 退化的基于流的方法。它在 LDCT 合成方面取得了令人印象深刻的性能。接下来,我们可以使用生成的配对数据训练神经网络进行 LDCT 去噪。去噪结果优于传统的和弱监督的方法,与监督式深度学习方法相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索