Parashar Shivam, Neimark Alexander V
Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
J Colloid Interface Sci. 2024 Nov;673:700-710. doi: 10.1016/j.jcis.2024.06.083. Epub 2024 Jun 10.
Phase behavior of nanoconfined fluids adsorbed in metal-organic frameworks is of paramount importance for the design of advanced materials for energy and gas storage, separations, electrochemical devices, sensors, and drug delivery, as well as for the pore structure characterization. Phase transformations in adsorbed fluids often involve long-lasting metastable states and hysteresis that has been well-documented in gas adsorption-desorption and nonwetting fluid intrusion-extrusion experiments. However, theoretical prediction of the observed nanophase behavior remains a challenging problem. The mesoscopic canonical, or mesocanonical, ensemble (MCE) is devised to study the nanophase behavior under conditions of controlled fluctuations to stabilize metastable and labile states. Here, we implement and apply the MCE Monte Carlo (MCEMC) simulation scheme to predict the origins of reversible and hysteric adsorption phase transitions in a series of practical MOF materials, including IRMOF-1, ZIF-412, UiO-66, Cu-BTC, IRMOF-74-V, VII, and IX. The MCEMC method, called the gauge cell method, allows to produce Van der Waals type isotherms with distinctive swings around the phase transition regions. The constructed isotherms determine the positions of phase equilibrium and spinodals, as well as the nucleation barriers separating metastable states. We demonstrate the unique capabilities of the MCEMC method in quantitative predictions of experimental observations compared with the conventional grand canonical and canonical ensemble simulations. The MCEMC method is implemented in the open-source RASPA and LAMMPS software packages and recommended for studies of adsorption behavior and pore structure characterization of MOFs and other nanoporous materials.
吸附在金属有机框架中的纳米受限流体的相行为对于设计用于能量和气体存储、分离、电化学装置、传感器和药物递送的先进材料以及孔隙结构表征至关重要。吸附流体中的相变通常涉及持久的亚稳态和滞后现象,这在气体吸附 - 解吸和非润湿流体侵入 - 挤出实验中已有充分记录。然而,对观察到的纳米相行为进行理论预测仍然是一个具有挑战性的问题。介观正则系综(MCE)旨在研究在控制波动条件下的纳米相行为,以稳定亚稳态和不稳定状态。在此,我们实施并应用MCE蒙特卡罗(MCEMC)模拟方案来预测一系列实际MOF材料(包括IRMOF - 1、ZIF - 412、UiO - 66、Cu - BTC、IRMOF - 74 - V、VII和IX)中可逆和滞后吸附相变的起源。MCEMC方法,即规范单元法,能够产生在相变区域周围具有独特摆动的范德华型等温线。构建的等温线确定了相平衡和旋节线的位置,以及分隔亚稳态的成核势垒。与传统的巨正则系综和正则系综模拟相比,我们展示了MCEMC方法在定量预测实验观测结果方面的独特能力。MCEMC方法在开源的RASPA和LAMMPS软件包中实现,并推荐用于研究MOF和其他纳米多孔材料的吸附行为和孔隙结构表征。