Suppr超能文献

利用进化启发的蛋白质设计同时增强多种功能特性。

Simultaneous enhancement of multiple functional properties using evolution-informed protein design.

机构信息

Department of Systems Biology, Harvard Medical School, Boston, MA, USA.

Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Nat Commun. 2024 Jun 20;15(1):5141. doi: 10.1038/s41467-024-49119-x.

Abstract

A major challenge in protein design is to augment existing functional proteins with multiple property enhancements. Altering several properties likely necessitates numerous primary sequence changes, and novel methods are needed to accurately predict combinations of mutations that maintain or enhance function. Models of sequence co-variation (e.g., EVcouplings), which leverage extensive information about various protein properties and activities from homologous protein sequences, have proven effective for many applications including structure determination and mutation effect prediction. We apply EVcouplings to computationally design variants of the model protein TEM-1 β-lactamase. Nearly all the 14 experimentally characterized designs were functional, including one with 84 mutations from the nearest natural homolog. The designs also had large increases in thermostability, increased activity on multiple substrates, and nearly identical structure to the wild type enzyme. This study highlights the efficacy of evolutionary models in guiding large sequence alterations to generate functional diversity for protein design applications.

摘要

蛋白质设计的一个主要挑战是通过多种性能增强来增强现有的功能蛋白。改变几个特性可能需要许多序列的主要变化,并且需要新的方法来准确预测维持或增强功能的突变组合。序列协变模型(例如 EVcouplings)利用了同源蛋白序列中关于各种蛋白质性质和活性的广泛信息,已被证明在许多应用中非常有效,包括结构确定和突变效应预测。我们将 EVcouplings 应用于计算设计模型蛋白 TEM-1 β-内酰胺酶的变体。在实验中,几乎所有 14 种特性都得到了表征,包括 84 种来自最近的天然同源物的突变。这些设计还具有较大的热稳定性提高、对多种底物的活性增加以及与野生型酶几乎相同的结构。这项研究突出了进化模型在指导大序列改变以产生蛋白质设计应用的功能多样性方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c925/11190266/1af755434a76/41467_2024_49119_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验