Suppr超能文献

相似文献

1
Large language models generate functional protein sequences across diverse families.
Nat Biotechnol. 2023 Aug;41(8):1099-1106. doi: 10.1038/s41587-022-01618-2. Epub 2023 Jan 26.
2
An evolution-based model for designing chorismate mutase enzymes.
Science. 2020 Jul 24;369(6502):440-445. doi: 10.1126/science.aba3304.
6
Mycobacterium tuberculosis chorismate mutase: A potential target for TB.
Bioorg Med Chem. 2017 Mar 15;25(6):1725-1736. doi: 10.1016/j.bmc.2017.02.001. Epub 2017 Feb 4.
7
Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity.
Protein Eng Des Sel. 2005 Apr;18(4):161-3. doi: 10.1093/protein/gzi015. Epub 2005 Apr 8.
8

引用本文的文献

1
Multimodal integration strategies for clinical application in oncology.
Front Pharmacol. 2025 Aug 20;16:1609079. doi: 10.3389/fphar.2025.1609079. eCollection 2025.
2
Integrating experimental feedback improves generative models for biological sequences.
Nucleic Acids Res. 2025 Aug 27;53(16). doi: 10.1093/nar/gkaf832.
3
Deciphering enzymatic potential in metagenomic reads through DNA language models.
Nucleic Acids Res. 2025 Aug 27;53(16). doi: 10.1093/nar/gkaf836.
4
Rational protein engineering using an omni-directional multipoint mutagenesis generation pipeline.
iScience. 2025 Aug 5;28(9):113273. doi: 10.1016/j.isci.2025.113273. eCollection 2025 Sep 19.
5
Exploring the space of self-reproducing ribozymes using generative models.
Nat Commun. 2025 Aug 22;16(1):7836. doi: 10.1038/s41467-025-63151-5.
6
SALM: Sequence-Structure Pre-trained Large Language Model for Comprehensive Antibody Representation Learning.
Research (Wash D C). 2025 Aug 19;8:0721. doi: 10.34133/research.0721. eCollection 2025.
7
Tokenization and deep learning architectures in genomics: A comprehensive review.
Comput Struct Biotechnol J. 2025 Jul 28;27:3547-3555. doi: 10.1016/j.csbj.2025.07.038. eCollection 2025.
9
Target sequence-conditioned design of peptide binders using masked language modeling.
Nat Biotechnol. 2025 Aug 13. doi: 10.1038/s41587-025-02761-2.

本文引用的文献

1
ProtGPT2 is a deep unsupervised language model for protein design.
Nat Commun. 2022 Jul 27;13(1):4348. doi: 10.1038/s41467-022-32007-7.
2
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
3
A backbone-centred energy function of neural networks for protein design.
Nature. 2022 Feb;602(7897):523-528. doi: 10.1038/s41586-021-04383-5. Epub 2022 Feb 9.
4
Protein sequence design with a learned potential.
Nat Commun. 2022 Feb 8;13(1):746. doi: 10.1038/s41467-022-28313-9.
5
De novo protein design by deep network hallucination.
Nature. 2021 Dec;600(7889):547-552. doi: 10.1038/s41586-021-04184-w. Epub 2021 Dec 1.
6
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
7
Protein design and variant prediction using autoregressive generative models.
Nat Commun. 2021 Apr 23;12(1):2403. doi: 10.1038/s41467-021-22732-w.
8
Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2016239118.
9
Low-N protein engineering with data-efficient deep learning.
Nat Methods. 2021 Apr;18(4):389-396. doi: 10.1038/s41592-021-01100-y. Epub 2021 Apr 7.
10
Fast and sensitive taxonomic assignment to metagenomic contigs.
Bioinformatics. 2021 Sep 29;37(18):3029-3031. doi: 10.1093/bioinformatics/btab184.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验