Department of Pulmonary and Critical Care Medicine, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China.
Department of Medical, Hangzhou Matridx Biotechnology, Hangzhou, 311100, China.
Respir Res. 2024 Jun 20;25(1):250. doi: 10.1186/s12931-024-02887-y.
INTRODUCTION: Lower respiratory tract infections(LRTIs) in adults are complicated by diverse pathogens that challenge traditional detection methods, which are often slow and insensitive. Metagenomic next-generation sequencing (mNGS) offers a comprehensive, high-throughput, and unbiased approach to pathogen identification. This retrospective study evaluates the diagnostic efficacy of mNGS compared to conventional microbiological testing (CMT) in LRTIs, aiming to enhance detection accuracy and enable early clinical prediction. METHODS: In our retrospective single-center analysis, 451 patients with suspected LRTIs underwent mNGS testing from July 2020 to July 2023. We assessed the pathogen spectrum and compared the diagnostic efficacy of mNGS to CMT, with clinical comprehensive diagnosis serving as the reference standard. The study analyzed mNGS performance in lung tissue biopsies and bronchoalveolar lavage fluid (BALF) from cases suspected of lung infection. Patients were stratified into two groups based on clinical outcomes (improvement or mortality), and we compared clinical data and conventional laboratory indices between groups. A predictive model and nomogram for the prognosis of LRTIs were constructed using univariate followed by multivariate logistic regression, with model predictive accuracy evaluated by the area under the ROC curve (AUC). RESULTS: (1) Comparative Analysis of mNGS versus CMT: In a comprehensive analysis of 510 specimens, where 59 cases were concurrently collected from lung tissue biopsies and BALF, the study highlights the diagnostic superiority of mNGS over CMT. Specifically, mNGS demonstrated significantly higher sensitivity and specificity in BALF samples (82.86% vs. 44.42% and 52.00% vs. 21.05%, respectively, p < 0.001) alongside greater positive and negative predictive values (96.71% vs. 79.55% and 15.12% vs. 5.19%, respectively, p < 0.01). Additionally, when comparing simultaneous testing of lung tissue biopsies and BALF, mNGS showed enhanced sensitivity in BALF (84.21% vs. 57.41%), whereas lung tissues offered higher specificity (80.00% vs. 50.00%). (2) Analysis of Infectious Species in Patients from This Study: The study also notes a concerning incidence of lung abscesses and identifies Epstein-Barr virus (EBV), Fusobacterium nucleatum, Mycoplasma pneumoniae, Chlamydia psittaci, and Haemophilus influenzae as the most common pathogens, with Klebsiella pneumoniae emerging as the predominant bacterial culprit. Among herpes viruses, EBV and herpes virus 7 (HHV-7) were most frequently detected, with HHV-7 more prevalent in immunocompromised individuals. (3) Risk Factors for Adverse Prognosis and a Mortality Risk Prediction Model in Patients with LRTIs: We identified key risk factors for poor prognosis in lower respiratory tract infection patients, with significant findings including delayed time to mNGS testing, low lymphocyte percentage, presence of chronic lung disease, multiple comorbidities, false-negative CMT results, and positive herpesvirus affecting patient outcomes. We also developed a nomogram model with good consistency and high accuracy (AUC of 0.825) for predicting mortality risk in these patients, offering a valuable clinical tool for assessing prognosis. CONCLUSION: The study underscores mNGS as a superior tool for lower respiratory tract infection diagnosis, exhibiting higher sensitivity and specificity than traditional methods.
简介:成人下呼吸道感染(LRTIs)由多种病原体引起,这些病原体对传统的检测方法构成挑战,传统方法通常速度较慢且不敏感。宏基因组下一代测序(mNGS)提供了一种全面、高通量且无偏倚的病原体识别方法。本回顾性研究旨在通过比较传统微生物检测(CMT)来评估 mNGS 在 LRTIs 中的诊断效果,以提高检测准确性并实现早期临床预测。
方法:在我们的回顾性单中心分析中,从 2020 年 7 月至 2023 年 7 月,对 451 例疑似 LRTIs 患者进行了 mNGS 检测。我们评估了病原体谱,并比较了 mNGS 与 CMT 的诊断效果,以临床综合诊断为参考标准。本研究分析了疑似肺部感染患者的肺组织活检和支气管肺泡灌洗液(BALF)中 mNGS 的性能。根据临床转归(改善或死亡)将患者分为两组,并比较了两组之间的临床数据和常规实验室指标。使用单变量和多变量逻辑回归构建了 LRTIs 预后的预测模型和列线图,通过 ROC 曲线下面积(AUC)评估模型预测准确性。
结果:(1)mNGS 与 CMT 的比较分析:在对 510 份标本进行综合分析中,59 例同时采集肺组织活检和 BALF 标本,研究突出了 mNGS 优于 CMT 的诊断优势。具体来说,mNGS 在 BALF 标本中的敏感性和特异性显著更高(分别为 82.86%比 44.42%和 52.00%比 21.05%,p<0.001),阳性和阴性预测值也更高(分别为 96.71%比 79.55%和 15.12%比 5.19%,p<0.01)。此外,当比较同时检测肺组织活检和 BALF 时,mNGS 在 BALF 中的敏感性提高(84.21%比 57.41%),而肺组织的特异性更高(80.00%比 50.00%)。(2)本研究患者的感染物种分析:本研究还注意到肺脓肿的发病率较高,并确定了 Epstein-Barr 病毒(EBV)、梭杆菌属、肺炎支原体、鹦鹉热衣原体和流感嗜血杆菌是最常见的病原体,其中肺炎克雷伯菌是主要的细菌病原体。在疱疹病毒中,EBV 和疱疹病毒 7(HHV-7)最常被检测到,HHV-7 在免疫功能低下的个体中更为普遍。(3)LRTIs 患者不良预后的风险因素和死亡率预测模型:我们确定了 LRTIs 患者预后不良的关键风险因素,包括 mNGS 检测时间延迟、淋巴细胞百分比低、慢性肺部疾病存在、多种合并症、CMT 结果假阴性以及阳性疱疹病毒对患者预后的影响。我们还开发了一种具有良好一致性和高准确性(AUC 为 0.825)的列线图模型,用于预测这些患者的死亡风险,为评估预后提供了有价值的临床工具。
结论:该研究强调了 mNGS 作为下呼吸道感染诊断的优越工具,其敏感性和特异性均高于传统方法。
Ann Clin Microbiol Antimicrob. 2024-9-30
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2021-12
Infect Drug Resist. 2025-5-7
Int J Chron Obstruct Pulmon Dis. 2025-4-5
Open Life Sci. 2023-7-17