Zhong Daokun, Liu Siqi, Yue Ling, Feng Zhao, Wang Hongyan, Yang Peng, Su Bochao, Yang Xiaolong, Sun Yuanhui, Zhou Guijiang
Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
Chem Sci. 2024 May 2;15(24):9112-9119. doi: 10.1039/d4sc01200c. eCollection 2024 Jun 19.
The weak spin-orbit coupling (SOC) in metal-free organic molecules poses a challenge in achieving phosphorescence emission. To attain pure phosphorescence in RTP organic emitters, a promising molecular design concept has been proposed. This involves incorporating n → π* transitions and leveraging the heavy atomic effect within the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC) mechanism of bipolar molecules. Following this design concept, two bipolar metal-free organic molecules (PhSeB and PhSeDB) with donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) configurations have been synthesized. When the molecular configuration changes from D-A to A-D-A, PhSeDB exhibits stronger electron coupling and n → π* transitions, which can further enhance the spin-orbit coupling (SOC) together with the heave atom effect from the selenium atom. By the advanced synergism among enhanced n → π* transitions, heavy atom effect and magnified electron coupling to efficiently promote phosphorescence emission, PhSeDB can achieve pure RTP emission in both the solution and doped solid film. Thanks to the higher spin-orbit coupling matrix elements (SOCMEs) for T ↔ S, PhSeDB attains the highest phosphorescence quantum yield ( 0.78) among all the RTP organic emitters reported. Consequently, the purely organic phosphorescent light-emitting diodes (POPLEDs) based on PhSeDB achieve the highest external quantum efficiencies of 18.2% and luminance of 3000 cd m. These encouraging results underscore the significant potential of this innovative molecular design concept for highly efficient POPLEDs.
无金属有机分子中较弱的自旋轨道耦合(SOC)对实现磷光发射提出了挑战。为了在室温磷光(RTP)有机发光体中获得纯磷光,人们提出了一种很有前景的分子设计概念。这涉及引入n→π跃迁,并在双极性分子的自旋轨道电荷转移诱导的系间窜越(SOCT-ISC)机制中利用重原子效应。遵循这一设计概念,合成了两种具有供体-受体(D-A)和受体-供体-受体(A-D-A)构型的双极性无金属有机分子(PhSeB和PhSeDB)。当分子构型从D-A变为A-D-A时,PhSeDB表现出更强的电子耦合和n→π跃迁,这可以与硒原子的重原子效应一起进一步增强自旋轨道耦合(SOC)。通过增强的n→π*跃迁、重原子效应和放大的电子耦合之间的先进协同作用,有效地促进磷光发射,PhSeDB在溶液和掺杂固体薄膜中都能实现纯RTP发射。由于T↔S的自旋轨道耦合矩阵元(SOCMEs)较高,PhSeDB在所有报道的RTP有机发光体中获得了最高的磷光量子产率(0.78)。因此,基于PhSeDB的纯有机磷光发光二极管(POPLEDs)实现了18.2%的最高外量子效率和3000 cd m的亮度。这些令人鼓舞的结果突出了这种创新分子设计概念在高效POPLEDs方面的巨大潜力。