Suppr超能文献

紧凑型螺环电子供体/受体二元体系中自旋轨道电荷转移系间窜越(SOCT-ISC)诱导的长寿命电荷转移态

Long-Lived Charge-Transfer State Induced by Spin-Orbit Charge Transfer Intersystem Crossing (SOCT-ISC) in a Compact Spiro Electron Donor/Acceptor Dyad.

作者信息

Liu Dongyi, El-Zohry Ahmed M, Taddei Maria, Matt Clemens, Bussotti Laura, Wang Zhijia, Zhao Jianzhang, Mohammed Omar F, Di Donato Mariangela, Weber Stefan

机构信息

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, China.

Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

出版信息

Angew Chem Int Ed Engl. 2020 Jul 6;59(28):11591-11599. doi: 10.1002/anie.202003560. Epub 2020 May 8.

Abstract

We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long-lived triplet charge-transfer ( CT) state, based on the electron spin control using spin-orbit charge transfer intersystem crossing (SOCT-ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT-ISC takes 8 ns to produce the NI* state. Then the slow secondary CS (125 ns) gives the long-lived CT state (0.94 μs in deaerated n-hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as NI*→ CT→ NI*→ CT. With time-resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron-spin polarization pattern was observed for the naphthalimide-localized triplet state. Our spiro compact dyad structure and the electron spin-control approach is different to previous methods for which invoking transition-metal coordination or chromophores with intrinsic ISC ability is mandatory.

摘要

我们制备了概念新颖、完全刚性的螺环紧凑电子供体(罗丹明B,内酰胺形式,RB)/受体(萘二甲酰亚胺;NI)正交二元体,以基于利用自旋轨道电荷转移系间窜越(SOCT-ISC)的电子自旋控制来实现长寿命三重态电荷转移(CT)态。瞬态吸收(TA)光谱表明,首次电荷分离(CS)在2.5 ps内发生,随后的SOCT-ISC需要8 ns来产生NI态。然后缓慢的二次CS(125 ns)产生具有高能级(约2.12 eV)的长寿命CT态(在脱气正己烷中为0.94 μs)。光激发时二元体的级联光物理过程总结为NI→CT→NI*→CT。通过时间分辨电子顺磁共振(TREPR)光谱,在萘二甲酰亚胺定位的三重态中观察到EEEAAA电子自旋极化模式。我们的螺环紧凑二元体结构和电子自旋控制方法不同于以往必须调用过渡金属配位或具有固有ISC能力的发色团的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df4/7496792/bbdcd7d923c9/ANIE-59-11591-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验