Kinikar Amogh, Englmann Thorsten G, Di Giovannantonio Marco, Bassi Nicolò, Xiang Feifei, Stolz Samuel, Widmer Roland, Borin Barin Gabriela, Turco Elia, Eimre Kristjan, Merino Díez Néstor, Ortega-Guerrero Andres, Feng Xinliang, Gröning Oliver, Pignedoli Carlo A, Fasel Roman, Ruffieux Pascal
nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.
Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany.
ACS Nano. 2024 Jul 2;18(26):16622-16631. doi: 10.1021/acsnano.4c00484. Epub 2024 Jun 21.
Atomically precise graphene nanoribbons (GNRs) have a wide range of electronic properties that depend sensitively on their chemical structure. Several types of GNRs have been synthesized on metal surfaces through selective surface-catalyzed reactions. The resulting GNRs are adsorbed on the metal surface, which may lead to hybridization between the GNR orbitals and those of the substrate. This makes investigation of the intrinsic electronic properties of GNRs more difficult and also rules out capacitive gating. Here, we demonstrate the formation of a dielectric gold chloride adlayer that can intercalate underneath GNRs on the Au(111) surface. The intercalated gold chloride adlayer electronically decouples the GNRs from the metal and leads to a substantial hole-doping of the GNRs. Our results introduce an easily accessible tool in the in situ characterization of GNRs grown on Au(111) that allows for exploration of their electronic properties in a heavily hole-doped regime.
原子精确的石墨烯纳米带(GNRs)具有广泛的电子特性,这些特性敏感地取决于其化学结构。通过选择性表面催化反应,已经在金属表面合成了几种类型的GNRs。所得的GNRs吸附在金属表面,这可能导致GNR轨道与基底轨道之间的杂化。这使得研究GNRs的本征电子特性更加困难,并且也排除了电容门控。在这里,我们展示了一种介电氯化金吸附层的形成,该吸附层可以插入到Au(111)表面上的GNRs下方。插入的氯化金吸附层使GNRs与金属发生电子解耦,并导致GNRs发生大量空穴掺杂。我们的结果为在Au(111)上生长的GNRs的原位表征引入了一种易于使用的工具,该工具允许在重空穴掺杂状态下探索其电子特性。