Suppr超能文献

氧化镁上石墨烯纳米带中电荷与自旋的系统调制

Systematic modulation of charge and spin in graphene nanoribbons on MgO.

作者信息

Domínguez-Celorrio Amelia, Edens Leonard, Sanz Sofía, Vilas-Varela Manuel, Martinez-Castro Jose, Peña Diego, Langlais Véronique, Frederiksen Thomas, Pascual José I, Serrate David

机构信息

Insituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, E-50009, Spain.

School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia.

出版信息

Nat Commun. 2025 Jul 1;16(1):5632. doi: 10.1038/s41467-025-60767-5.

Abstract

In order to take full advantage of graphene nanostructures in quantum technologies, their charge and spin state must be precisely controlled. Graphene quantum dots require external gating potentials to tune their ground state. Here, we show systematic manipulation of the electron occupation in graphene nanoribbons lying on MgO layers grown on Ag(001). Owing to the efficient electronic decoupling character of MgO, and the electropositive nature of the substrate, the ribbons host an integer number of electrons that depend on their length and shape. This results in the alternation between a non-magnetic closed-shell state and an open-shell paramagnetic system for even and odd electron occupations respectively. For the odd case, we find a narrow Coulomb correlation gap, which is the smoking gun of its spin-½ state. Comparisons of scanning tunnelling microscopy data with mean-field Hubbard simulations confirm the discretization of the ribbons' electronic states and charge excess of up to 19 electrons per ribbon.

摘要

为了在量子技术中充分利用石墨烯纳米结构,必须精确控制其电荷和自旋状态。石墨烯量子点需要外部门控电势来调节其基态。在此,我们展示了对生长在Ag(001)上的MgO层上的石墨烯纳米带中电子占据情况的系统操控。由于MgO具有高效的电子解耦特性以及衬底的电正性,这些纳米带容纳的电子数为整数,且该整数取决于它们的长度和形状。这分别导致了偶数和奇数电子占据情况下非磁性闭壳层状态与开壳层顺磁系统之间的交替。对于奇数情况,我们发现了一个狭窄的库仑关联能隙,这是其自旋1/2状态的确凿证据。扫描隧道显微镜数据与平均场哈伯德模拟的比较证实了纳米带电子态的离散化以及每条纳米带高达19个电子的电荷过剩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9acf/12218530/ef31ba74eb4a/41467_2025_60767_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验