Suppr超能文献

通过基于机器学习的计算机模拟试验,解锁间充质基质细胞治疗骨关节炎的全部潜力。

Unlocking the full potential of mesenchymal stromal cell therapy for osteoarthritis through machine learning-based in silico trials.

机构信息

Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China; Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China; Agency for Science Technology and Research, Bioprocessing Technology Institute, Singapore, Singapore.

Bio-totem Pte. Ltd., Guangzhou (Nanhai) Biomedical Industrial Park, Foshan, Guangdong, China.

出版信息

Cytotherapy. 2024 Oct;26(10):1252-1263. doi: 10.1016/j.jcyt.2024.05.016. Epub 2024 May 19.

Abstract

Despite the potential of mesenchymal stromal cells (MSCs) in osteoarthritis (OA) treatment, the challenge lies in addressing their therapeutic inconsistency. Clinical trials revealed significantly varied therapeutic outcomes among patients receiving the same allogenic MSCs but different treatment regimens. Therefore, optimizing personalized treatment strategies is crucial to fully unlock MSCs' potential and enhance therapeutic consistency. We employed the XGBoost algorithm to train a self-collected database comprising 37 published clinical reports to create a model capable of predicting the probability of effective pain relief and Western Ontario and McMaster Universities (WOMAC) index improvement in OA patients undergoing MSC therapy. Leveraging this model, extensive in silico simulations were conducted to identify optimal personalized treatment strategies and ideal patient profiles. Our in silico trials predicted that the individually optimized MSC treatment strategies would substantially increase patients' chances of recovery compared to the strategies used in reported clinical trials, thereby potentially benefiting 78.1%, 47.8%, 94.4% and 36.4% of the patients with ineffective short-term pain relief, short-term WOMAC index improvement, long-term pain relief and long-term WOMAC index improvement, respectively. We further recommended guidelines on MSC number, concentration, and the patients' appropriate physical (body mass index, age, etc.) and disease states (Kellgren-Lawrence grade, etc.) for OA treatment. Additionally, we revealed the superior efficacy of MSC in providing short-term pain relief compared to platelet-rich plasma therapy for most OA patients. This study represents the pioneering effort to enhance the efficacy and consistency of MSC therapy through machine learning applied to clinical data. The in silico trial approach holds immense potential for diverse clinical applications.

摘要

尽管间充质基质细胞(MSCs)在骨关节炎(OA)治疗中有很大的潜力,但挑战在于解决其治疗的不一致性。临床试验表明,接受相同同种异体 MSCs 但不同治疗方案的患者的治疗结果差异显著。因此,优化个性化治疗策略对于充分发挥 MSCs 的潜力和提高治疗一致性至关重要。我们使用 XGBoost 算法训练了一个自我收集的数据库,该数据库包含 37 份已发表的临床报告,创建了一个能够预测接受 MSC 治疗的 OA 患者有效缓解疼痛和 Western Ontario 和 McMaster 大学(WOMAC)指数改善的概率的模型。利用该模型,我们进行了广泛的计算机模拟,以确定最佳的个性化治疗策略和理想的患者特征。我们的计算机模拟预测,与报告的临床试验中使用的策略相比,个体优化的 MSC 治疗策略将大大增加患者康复的机会,从而可能使 78.1%、47.8%、94.4%和 36.4%的短期疼痛缓解无效、短期 WOMAC 指数改善、长期疼痛缓解和长期 WOMAC 指数改善的患者受益。我们进一步建议了关于 MSC 数量、浓度以及患者适当的身体(体重指数、年龄等)和疾病状况(Kellgren-Lawrence 分级等)的指南,用于 OA 治疗。此外,我们还揭示了 MSC 在为大多数 OA 患者提供短期疼痛缓解方面比富血小板血浆治疗更有效。这项研究代表了通过机器学习应用于临床数据来提高 MSC 治疗效果和一致性的开创性努力。计算机模拟试验方法在各种临床应用中具有巨大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验