Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
Biochim Biophys Acta Bioenerg. 2024 Nov 1;1865(4):149150. doi: 10.1016/j.bbabio.2024.149150. Epub 2024 Jun 19.
Photosystem II (PS II) assembly is a stepwise process involving preassembly complexes or modules focused around four core PS II proteins. The current model of PS II assembly in cyanobacteria is derived from studies involving the deletion of one or more of these core subunits. Such deletions may destabilize other PS II assembly intermediates, making constructing a clear picture of the intermediate events difficult. Information on plastoquinone exchange pathways operating within PS II is also unclear and relies heavily on computer-aided simulations. Deletion of PsbX in [S. Biswas, J.J. Eaton-Rye, Biochim. Biophys. Acta - Bioenerg. 1863 (2022) 148519] suggested modified Q binding in PS II lacking this subunit. This study has indicated the phenotype of the ∆PsbX mutant arose by disrupting a conserved hydrogen bond between PsbX and the D2 (PsbD) protein. We mutated two conserved arginine residues (D2:Arg24 and D2:Arg26) to further understand the observations made with the ∆PsbX mutant. Mutating Arg24 disrupted the interaction between PsbX and D2, replicating the high-light sensitivity and altered fluorescence decay kinetics observed in the ∆PsbX strain. The Arg26 residue, on the other hand, was more important for either PS II assembly or for stabilizing the fully assembled complex. The effects of mutating both arginine residues to alanine or aspartate were severe enough to render the corresponding double mutants non-photoautotrophic. Our study furthers our knowledge of the amino-acid interactions stabilizing plastoquinone-exchange pathways while providing a platform to study PS II assembly and repair without the actual deletion of any proteins.
光系统 II(PS II)的组装是一个逐步的过程,涉及到围绕四个核心 PS II 蛋白的预组装复合物或模块。目前蓝藻 PS II 组装的模型是基于对这些核心亚基之一或多个进行缺失的研究得出的。这种缺失可能会使其他 PS II 组装中间体不稳定,从而难以构建清晰的中间事件图像。关于在 PS II 内运行的质体醌交换途径的信息也不清楚,并且严重依赖计算机辅助模拟。[S. Biswas, J.J. Eaton-Rye, Biochim. Biophys. Acta - Bioenerg. 1863 (2022) 148519]中 PsbX 的缺失表明,缺乏该亚基的 PS II 中质体醌的结合发生了改变。这项研究表明,∆PsbX 突变体的表型是通过破坏 PsbX 与 D2(PsbD)蛋白之间保守的氢键而产生的。我们突变了两个保守的精氨酸残基(D2:Arg24 和 D2:Arg26),以进一步了解与∆PsbX 突变体相关的观察结果。突变 Arg24 破坏了 PsbX 与 D2 之间的相互作用,复制了在∆PsbX 菌株中观察到的高光敏感性和荧光衰减动力学的改变。另一方面,Arg26 残基对于 PS II 组装或稳定完全组装的复合物更为重要。将两个精氨酸残基突变为丙氨酸或天冬氨酸的影响严重到足以使相应的双突变体无法进行光合作用。我们的研究进一步加深了我们对稳定质体醌交换途径的氨基酸相互作用的认识,同时为在不实际缺失任何蛋白质的情况下研究 PS II 组装和修复提供了一个平台。