Shahpouri Elham, Kalantarian Mohammad Mahdi
Department of Ceramic, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran.
Sci Rep. 2024 Jun 21;14(1):14311. doi: 10.1038/s41598-024-65230-x.
This study evaluates electrochemical voltage-range and voltage-profile regarding electrodes of insertion (intercalation) batteries. The phrase "voltage-range" expresses the difference between obtained maximum and minimum potential for the cells. It also can be called as operating voltage-range, working voltage-range, electrochemical voltage-range, or voltage window. This paper proposes a new notion regarding electron density of states, i.e. trans-band, which can be implemented to justify the voltage -range and -profile, by means of Fermi levels' alignment. Voltage -range and -profile of a number of insertion electrode materials are clarified by the proposed theoretical approach, namely LiMnO, LiMnO, ZnMnO, LiFePO, LiCoO, LiFeSiO, LiFeSOF, and TiS. Moreover, the probable observed difference between charge and discharge profile is explained by the approach. The theoretical model/approach represents a number of important concepts, which can meet some scientific fields, e.g. electrochemistry, energy storage devices, solid state physics (DFT), and phase diagrams. By means of DFT calculations, this paper deals with quantizing the energy of electrochemical reactions, justifying the configuration of voltage-profile, and explaining the origin of the voltage-range. Accordance with the experimental observations suggests that this paper can extend boundary of quantum mechanics toward territories of classical thermodynamics, and boundary of the modern thermodynamics toward kinetics. Opening a new horizon in the related fields, this paper can help tuning, engineering, and predicting cell-voltage behavior.
本研究评估了插入(嵌入)电池电极的电化学电压范围和电压分布。术语“电压范围”表示电池获得的最大和最小电位之间的差值。它也可被称为工作电压范围、操作电压范围、电化学电压范围或电压窗口。本文提出了一个关于态电子密度的新概念,即跨带,它可通过费米能级的对齐来解释电压范围和电压分布。通过所提出的理论方法,即LiMnO、LiMnO、ZnMnO、LiFePO、LiCoO、LiFeSiO、LiFeSOF和TiS,阐明了多种插入电极材料的电压范围和电压分布。此外,该方法还解释了充电和放电曲线中可能观察到的差异。该理论模型/方法代表了一些重要概念,可应用于一些科学领域,如电化学、储能装置、固态物理(密度泛函理论)和相图。通过密度泛函理论计算,本文对电化学反应的能量进行了量化,解释了电压分布的构型,并阐述了电压范围的起源。与实验观察结果一致表明,本文可将量子力学的边界扩展到经典热力学领域,将现代热力学的边界扩展到动力学领域。本文在相关领域开辟了新的视野,有助于调整、设计和预测电池电压行为。