Liang Zhili, Baubaid Abdulaziz, Radtke Mariusz, Mellin Maximilian, Maheu Clément, Maiti Sandipan, Sclar Hadar, Píš Igor, Nappini Silvia, Magnano Elena, Bondino Federica, Winkler Robert, Hausbrand René, Hess Christian, Alff Lambert, Markovsky Boris, Aurbach Doron, Jaegermann Wolfram, Cherkashinin Gennady
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
Department of Chemistry, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287, Darmstadt, Germany.
Adv Sci (Weinh). 2025 Feb;12(7):e2413054. doi: 10.1002/advs.202413054. Epub 2024 Dec 27.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling. The approach enables to forecast the intrinsic stability of the cathodes and discriminate the reaction pathways associated with interfacial electronic charge-transfer mechanisms. Specifically, light is shed on the evolution of cationic and anionic redox in high-energy density lithium-rich 0.33LiMnO·0.67LiNiCoMnO (HE-NCM) cathodes, particularly those that undergo surface modification through SO and NH double-gas treatment to suppress the structural degradation. The chemical composition and energy distribution of the occupied and unoccupied electronic states at the different charging/discharging states are quantitatively estimated by using advanced spectroscopy techniques, including operando Raman spectroscopy. The concept is successfully demonstrated in designing artificial interfaces for high-voltage olivine structure cathodes enabling stable battery operation up to 5.1 V versus Li/Li.
在高能量密度锂离子电池中,阴极/电解质界面的设计对于在电池充电至高电压时保护表面免受阴极不期望的氧释放至关重要。然而,工程化界面在与(脱)锂相关的阳离子和阴离子氧化还原反应中的参与常常被忽视,这主要是由于难以将这些过程与阴极/电解质界面处的化学/催化反应区分开来。在此,开发了一种新的电子能带图概念,其中包括研究电池循环时电化学势和电离势的演变。该方法能够预测阴极的固有稳定性,并区分与界面电子电荷转移机制相关的反应途径。具体而言,揭示了高能量密度富锂0.33LiMnO·0.67LiNiCoMnO(HE-NCM)阴极中阳离子和阴离子氧化还原的演变,特别是那些通过SO和NH双气体处理进行表面改性以抑制结构降解的阴极。通过使用包括原位拉曼光谱在内的先进光谱技术,定量估计了不同充电/放电状态下占据和未占据电子态的化学成分和能量分布。该概念在设计用于高压橄榄石结构阴极的人工界面中得到成功验证,该阴极能够实现高达5.1 V(相对于Li/Li)的稳定电池运行。