Suppr超能文献

利用机器学习在县一级预测白尾鹿的慢性消瘦病。

Predicting chronic wasting disease in white-tailed deer at the county scale using machine learning.

机构信息

Wildlife Health Lab, Cornell University, Ithaca, NY, USA.

Texas A & M Transportation Institute, Austin, TX, USA.

出版信息

Sci Rep. 2024 Jun 22;14(1):14373. doi: 10.1038/s41598-024-65002-7.

Abstract

Continued spread of chronic wasting disease (CWD) through wild cervid herds negatively impacts populations, erodes wildlife conservation, drains resource dollars, and challenges wildlife management agencies. Risk factors for CWD have been investigated at state scales, but a regional model to predict locations of new infections can guide increasingly efficient surveillance efforts. We predicted CWD incidence by county using CWD surveillance data depicting white-tailed deer (Odocoileus virginianus) in 16 eastern and midwestern US states. We predicted the binary outcome of CWD-status using four machine learning models, utilized five-fold cross-validation and grid search to pinpoint the best model, then compared model predictions against the subsequent year of surveillance data. Cross validation revealed that the Light Boosting Gradient model was the most reliable predictor given the regional data. The predictive model could be helpful for surveillance planning. Predictions of false positives emphasize areas that warrant targeted CWD surveillance because of similar conditions with counties known to harbor CWD. However, disagreements in positives and negatives between the CWD Prediction Web App predictions and the on-the-ground surveillance data one year later underscore the need for state wildlife agency professionals to use a layered modeling approach to ensure robust surveillance planning. The CWD Prediction Web App is at https://cwd-predict.streamlit.app/ .

摘要

慢性消耗病(CWD)在野生鹿群中的持续传播对种群产生负面影响,侵蚀野生动物保护,消耗资源资金,并对野生动物管理机构构成挑战。CWD 的风险因素已在州级尺度上进行了研究,但预测新感染地点的区域模型可以指导日益有效的监测工作。我们使用描述美国东部和中西部 16 个州白尾鹿(Odocoileus virginianus)的 CWD 监测数据,按县预测 CWD 发病率。我们使用四种机器学习模型预测 CWD 状态的二进制结果,利用五重交叉验证和网格搜索来确定最佳模型,然后将模型预测与随后一年的监测数据进行比较。交叉验证表明,鉴于区域数据,Light Boosting Gradient 模型是最可靠的预测器。该预测模型对于监测规划可能会有所帮助。假阳性预测强调了需要进行有针对性的 CWD 监测的地区,因为这些地区与已知存在 CWD 的县具有相似的条件。然而,CWD 预测网络应用程序的预测结果与一年后实地监测数据在阳性和阴性方面存在分歧,这突显了州野生动物机构专业人员需要使用分层建模方法来确保进行强有力的监测规划的必要性。CWD 预测网络应用程序可在 https://cwd-predict.streamlit.app/ 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/11193737/4c98d0d60ca4/41598_2024_65002_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验