Tan Xianfang, Dong Xueying, Zhang Fangfang, Huang Chi, Zhang Yifu
Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; School of Chemistry, Dalian University of Technology, Dalian 116024, China.
J Colloid Interface Sci. 2024 Nov 15;674:67-78. doi: 10.1016/j.jcis.2024.06.142. Epub 2024 Jun 21.
In the wake of the carbon-neutral era, the exploration of innovative materials for energy storage and conversion has garnered increasing attention. While nickel silicates have been a focal point in energy storage research, their application in supercapacitors (SCs) has been relatively underreported due to poor conductivity. A newly designed architecture, designated as rGO@NiSiO@NiO/C (abbreviated for reduced graphene oxide (rGO), nickel silicate (NiSiO), nickel oxide/carbon (NiO/C)), has been developed to enhance the electrochemical performance of NiSiO. The incorporation of inner rGO provides structural support for NiSiO, enhancing conductivity, while the outer NiO/C layer not only boosts conductivity but also safeguards NiSiO from structural degradation and electrolyte dissolution. This architecture eliminates multi-phase mixtures, facilitating rapid electron/mass transfer kinetics and accelerating electrochemical reactions, resulting in exceptional electrochemical properties. The rGO@NiSiO@NiO/C architecture achieves a specific capacitance of 324F·g at 0.5 A·g, with a superb cycle performance of ∼ 91 % after 10,000 cycles, surpassing state-of-the-art nickel silicates. Furthermore, the hybrid supercapacitor (HSC) device incorporating the rGO@NiSiO@NiO/C electrode attains an areal capacitance of 159 mF·cm at 2.5 mA·cm, a retention ratio of ∼ 98 % after 10,000 cycles, and an energy density of 0.68 Wh·m (26.7 Wh·kg) at 3.4 W·m (343.8 W·kg). This study presents a layer-by-layer approach for constructing transition metal silicates/C architectures to enhance their electrochemical performance.
在碳中和时代,用于能量存储和转换的创新材料探索受到了越来越多的关注。虽然硅酸镍一直是能量存储研究的重点,但由于其导电性较差,在超级电容器(SCs)中的应用报道相对较少。一种新设计的结构,命名为rGO@NiSiO@NiO/C(还原氧化石墨烯(rGO)、硅酸镍(NiSiO)、氧化镍/碳(NiO/C)的缩写),已被开发出来以提高NiSiO的电化学性能。内部rGO的加入为NiSiO提供了结构支撑,提高了导电性,而外部的NiO/C层不仅提高了导电性,还保护NiSiO免受结构降解和电解质溶解的影响。这种结构消除了多相混合物,促进了快速的电子/质量转移动力学并加速了电化学反应,从而产生了优异的电化学性能。rGO@NiSiO@NiO/C结构在0.5 A·g时实现了324F·g的比电容,在10000次循环后具有约91%的出色循环性能,超过了现有最先进的硅酸镍。此外,包含rGO@NiSiO@NiO/C电极的混合超级电容器(HSC)器件在2.5 mA·cm时达到了159 mF·cm的面积电容,在10000次循环后保持率约为98%,在3.4 W·m(343.8 W·kg)时能量密度为0.68 Wh·m(26.7 Wh·kg)。本研究提出了一种逐层构建过渡金属硅酸盐/C结构以提高其电化学性能的方法。