Suppr超能文献

用于混合超级电容器的具有增强电化学性能的硅酸镍/碳复合材料的结构工程

Structure engineering of nickel silicate/carbon composite with boosted electrochemical performances for hybrid supercapacitors.

作者信息

Tan Xianfang, Dong Xueying, Zhang Fangfang, Huang Chi, Zhang Yifu

机构信息

Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.

Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; School of Chemistry, Dalian University of Technology, Dalian 116024, China.

出版信息

J Colloid Interface Sci. 2024 Nov 15;674:67-78. doi: 10.1016/j.jcis.2024.06.142. Epub 2024 Jun 21.

Abstract

In the wake of the carbon-neutral era, the exploration of innovative materials for energy storage and conversion has garnered increasing attention. While nickel silicates have been a focal point in energy storage research, their application in supercapacitors (SCs) has been relatively underreported due to poor conductivity. A newly designed architecture, designated as rGO@NiSiO@NiO/C (abbreviated for reduced graphene oxide (rGO), nickel silicate (NiSiO), nickel oxide/carbon (NiO/C)), has been developed to enhance the electrochemical performance of NiSiO. The incorporation of inner rGO provides structural support for NiSiO, enhancing conductivity, while the outer NiO/C layer not only boosts conductivity but also safeguards NiSiO from structural degradation and electrolyte dissolution. This architecture eliminates multi-phase mixtures, facilitating rapid electron/mass transfer kinetics and accelerating electrochemical reactions, resulting in exceptional electrochemical properties. The rGO@NiSiO@NiO/C architecture achieves a specific capacitance of 324F·g at 0.5 A·g, with a superb cycle performance of ∼ 91 % after 10,000 cycles, surpassing state-of-the-art nickel silicates. Furthermore, the hybrid supercapacitor (HSC) device incorporating the rGO@NiSiO@NiO/C electrode attains an areal capacitance of 159 mF·cm at 2.5 mA·cm, a retention ratio of ∼ 98 % after 10,000 cycles, and an energy density of 0.68 Wh·m (26.7 Wh·kg) at 3.4 W·m (343.8 W·kg). This study presents a layer-by-layer approach for constructing transition metal silicates/C architectures to enhance their electrochemical performance.

摘要

在碳中和时代,用于能量存储和转换的创新材料探索受到了越来越多的关注。虽然硅酸镍一直是能量存储研究的重点,但由于其导电性较差,在超级电容器(SCs)中的应用报道相对较少。一种新设计的结构,命名为rGO@NiSiO@NiO/C(还原氧化石墨烯(rGO)、硅酸镍(NiSiO)、氧化镍/碳(NiO/C)的缩写),已被开发出来以提高NiSiO的电化学性能。内部rGO的加入为NiSiO提供了结构支撑,提高了导电性,而外部的NiO/C层不仅提高了导电性,还保护NiSiO免受结构降解和电解质溶解的影响。这种结构消除了多相混合物,促进了快速的电子/质量转移动力学并加速了电化学反应,从而产生了优异的电化学性能。rGO@NiSiO@NiO/C结构在0.5 A·g时实现了324F·g的比电容,在10000次循环后具有约91%的出色循环性能,超过了现有最先进的硅酸镍。此外,包含rGO@NiSiO@NiO/C电极的混合超级电容器(HSC)器件在2.5 mA·cm时达到了159 mF·cm的面积电容,在10000次循环后保持率约为98%,在3.4 W·m(343.8 W·kg)时能量密度为0.68 Wh·m(26.7 Wh·kg)。本研究提出了一种逐层构建过渡金属硅酸盐/C结构以提高其电化学性能的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验