Chen Siyuan, Wang Hao, Zhang Huijie, Peng Cailiang, Li Yang, Wang Bing
Heilongjiang University of Chinese Medicine, Harbin, China.
College of Computer Science and Technology, Harbin Engineering University, Harbin, China.
Front Cardiovasc Med. 2024 Jun 7;11:1401143. doi: 10.3389/fcvm.2024.1401143. eCollection 2024.
Arrhythmia is an important indication of underlying cardiovascular diseases (CVD) and is prevalent worldwide. Accurate diagnosis of arrhythmia is crucial for timely and effective treatment. Electrocardiogram (ECG) plays a key role in the diagnosis of arrhythmia. With the continuous development of deep learning and machine learning processes in the clinical field, ECG processing algorithms have significantly advanced the field with timely and accurate diagnosis of arrhythmia.
In this study, we combined the wavelet time-frequency maps with the novel Swin Transformer deep learning model for the automatic detection of cardiac arrhythmias. In specific practice, we used the MIT-BIH arrhythmia dataset, and to improve the signal quality, we removed the high-frequency noise, artifacts, electromyographic noise and respiratory motion effects in the ECG signals by the wavelet thresholding method; we used the complex Morlet wavelet for the feature extraction, and plotted wavelet time-frequency maps to visualise the time-frequency information of the ECG; we introduced the Swin Transformer model for classification and achieve high classification accuracy of ECG signals through hierarchical construction and self attention mechanism, and combines windowed multi-head self-attention (W-MSA) and shifted window-based multi-head self-attention (SW-MSA) to comprehensively utilise the local and global information.
To enhance the confidence of the experimental results, we evaluated the performance using intra-patient and inter-patient paradigm analyses, and the model classification accuracies reached 99.34% and 98.37%, respectively, which are better than the currently available detection methods.
The results reveal that our proposed method is superior to currently available methods for detecting arrhythmia ECG. This provides a new idea for ECG based arrhythmia diagnosis.
心律失常是潜在心血管疾病(CVD)的重要指征,在全球范围内普遍存在。准确诊断心律失常对于及时有效的治疗至关重要。心电图(ECG)在心律失常的诊断中起着关键作用。随着深度学习和机器学习方法在临床领域的不断发展,ECG处理算法通过及时准确地诊断心律失常,极大地推动了该领域的进步。
在本研究中,我们将小波时频图与新型Swin Transformer深度学习模型相结合,用于心律失常的自动检测。在具体实践中,我们使用了麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)心律失常数据集,为提高信号质量,我们通过小波阈值法去除了ECG信号中的高频噪声、伪迹、肌电噪声和呼吸运动影响;我们使用复Morlet小波进行特征提取,并绘制小波时频图以可视化ECG的时频信息;我们引入Swin Transformer模型进行分类,并通过分层构建和自注意力机制实现了ECG信号的高分类准确率,同时结合了窗口多头自注意力(W - MSA)和基于移位窗口的多头自注意力(SW - MSA)来全面利用局部和全局信息。
为增强实验结果的可信度,我们使用患者内和患者间范式分析评估了性能,模型分类准确率分别达到99.34%和98.37%,优于目前可用的检测方法。
结果表明,我们提出的方法在检测心律失常ECG方面优于现有方法。这为基于ECG的心律失常诊断提供了新思路。