Toma Tabassum Islam, Choi Sunwoong
School of Electrical Engineering, Kookmin University, Seoul 02707, Korea.
Sensors (Basel). 2022 Sep 28;22(19):7396. doi: 10.3390/s22197396.
Automatic detection of arrhythmia using electrocardiogram (ECG) and deep learning (DL) is very important to reduce the global death rate from cardiovascular diseases (CVD). Previous studies on automatic arrhythmia detection relied largely on various ECG features and have achieved considerable classification accuracy using DL-based models. However, most previous research has ignored multi-class imbalanced problems in ECG arrhythmia detection. Therefore, it remains a challenge to improve the classification performance of the DL-based models. This paper proposes a novel parallel cross convolutional recurrent neural network in order to improve the arrhythmia detection performance of imbalanced ECG signals. The proposed model incorporates a recurrent neural network and a two-dimensional (2D) convolutional neural network (CNN) and can effectively learn temporal characteristics and rich spatial information of raw ECG signals. Continuous wavelet transform (CWT) is used to transform the ECG signals into a 2D scalogram composed of time-frequency components, and subsequently, the 2D-CNN can learn spatial information from the 2D scalogram. The proposed model is not only efficient in learning features with imbalanced samples but can also significantly improve model convergence with higher accuracy. The overall performance of our proposed model is evaluated based on the MIT-BIH arrhythmia dataset. Detailed analysis of evaluation metrics reveals that the proposed model is very effective in arrhythmia detection and significantly better than the existing hierarchical network models.
利用心电图(ECG)和深度学习(DL)自动检测心律失常对于降低全球心血管疾病(CVD)死亡率非常重要。以往关于心律失常自动检测的研究在很大程度上依赖于各种心电图特征,并使用基于深度学习的模型取得了相当高的分类准确率。然而,大多数先前的研究忽略了心电图心律失常检测中的多类不平衡问题。因此,提高基于深度学习模型的分类性能仍然是一个挑战。本文提出了一种新颖的并行交叉卷积递归神经网络,以提高不平衡心电图信号的心律失常检测性能。所提出的模型结合了递归神经网络和二维(2D)卷积神经网络(CNN),可以有效地学习原始心电图信号的时间特征和丰富的空间信息。连续小波变换(CWT)用于将心电图信号转换为由时频分量组成的二维尺度图,随后,二维卷积神经网络可以从二维尺度图中学习空间信息。所提出的模型不仅在学习不平衡样本的特征方面效率高,而且还可以显著提高模型收敛性并具有更高的准确率。我们提出的模型的整体性能是基于麻省理工学院-贝斯以色列女执事医疗中心(MIT-BIH)心律失常数据集进行评估的。对评估指标的详细分析表明,所提出的模型在心律失常检测中非常有效,并且明显优于现有的分层网络模型。