Li Jianbin, Ackah Michael, Amoako Frank Kwarteng, Cui Zipei, Sun LongWei, Li Haonan, Tsigbey Victor Edem, Zhao Mengdi, Zhao Weiguo
Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.
Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China.
Front Plant Sci. 2024 Jun 5;15:1349456. doi: 10.3389/fpls.2024.1349456. eCollection 2024.
Manganese (Mn) plays a pivotal role in plant growth and development. Aside aiding in plant growth and development, Mn as heavy metal (HM) can be toxic in soil when applied in excess. is an economically significant plant, capable of adapting to a range of environmental conditions and possessing the potential for phytoremediation of contaminated soil by HMs. The mechanism by which tolerates Mn stresses remains obscure.
In this study, Mn concentrations comprising sufficiency (0.15 mM), higher regimes (1.5 mM and 3 mM), and deficiency (0 mM and 0.03 mM), were applied to in pot treatment for 21 days to understand Mn tolerance. Mn stress effects on the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO concentration (Ci), chlorophyll content, plant morphological traits, enzymatic and non-enzymatic parameters were analyzed as well as metabolome signatures via non-targeted LC-MS technique.
Mn deficiency and toxicity decrease plant biomass, Pn, Ci, Gs, Tr, and chlorophyll content. Mn stresses induced a decline in the activities of catalase (CAT) and superoxide dismutase (SOD), while peroxidase (POD) activity, and leaf Mn content, increased. Soluble sugars, soluble proteins, malondialdehyde (MDA) and proline exhibited an elevation in Mn deficiency and toxicity concentrations. Metabolomic analysis indicates that Mn concentrations induced 1031 differentially expressed metabolites (DEMs), particularly amino acids, lipids, carbohydrates, benzene and derivatives and secondary metabolites. The DEMs are significantly enriched in alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, galactose metabolism, pantothenate and CoA biosynthesis, pentose phosphate pathway, carbon metabolism, etc.
The upregulation of Galactinol, Myo-inositol, Jasmonic acid, L-aspartic acid, Coproporphyrin I, Trigonelline, Pantothenol, and Pantothenate and their significance in the metabolic pathways makes them Mn stress tolerance metabolites in . Our findings reveal the fundamental understanding of DEMs in 's response to Mn nutrition and the metabolic mechanisms involved, which may hold potential significance for the advancement of genetic improvement initiatives and phytoremediation programs.
锰(Mn)在植物生长发育中起着关键作用。除了有助于植物生长发育外,作为重金属(HM)的锰如果过量施用于土壤中可能具有毒性。[植物名称]是一种具有经济意义的植物,能够适应一系列环境条件,并具有对受重金属污染土壤进行植物修复的潜力。[植物名称]耐受锰胁迫的机制仍不清楚。
在本研究中,将充足浓度(0.15 mM)、较高浓度(1.5 mM和3 mM)以及缺乏浓度(0 mM和0.03 mM)的锰施用于盆栽[植物名称]中21天,以了解其对锰的耐受性。分析了锰胁迫对净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、细胞间二氧化碳浓度(Ci)、叶绿素含量、植物形态特征、酶促和非酶促参数的影响,以及通过非靶向液相色谱 - 质谱技术分析代谢组特征。
锰缺乏和毒性会降低植物生物量、Pn、Ci、Gs、Tr和叶绿素含量。锰胁迫导致过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性下降,而过氧化物酶(POD)活性和叶片锰含量增加。在锰缺乏和毒性浓度下,可溶性糖、可溶性蛋白质、丙二醛(MDA)和脯氨酸含量升高。代谢组学分析表明,锰浓度诱导了1031种差异表达代谢物(DEM),特别是氨基酸、脂质、碳水化合物、苯及其衍生物和次生代谢物。这些DEM在α-亚麻酸代谢、不饱和脂肪酸生物合成、半乳糖代谢、泛酸和辅酶A生物合成、磷酸戊糖途径、碳代谢等过程中显著富集。
棉子糖、肌醇、茉莉酸、L-天冬氨酸、粪卟啉原I、胡芦巴碱、泛醇、泛酸盐的上调及其在代谢途径中的意义使其成为[植物名称]中耐受锰胁迫的代谢物。我们的研究结果揭示了对[植物名称]响应锰营养时DEM的基本理解以及所涉及的代谢机制,这可能对推进[植物名称]的遗传改良计划和植物修复项目具有潜在意义。