文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从蛋白质组学到候选疫苗:针对接吻虫的靶标发现和基于分子动力学的多表位疫苗工程。

From proteome to candidate vaccines: target discovery and molecular dynamics-guided multi-epitope vaccine engineering against kissing bug.

机构信息

Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.

Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.

出版信息

Front Immunol. 2024 Jun 10;15:1413893. doi: 10.3389/fimmu.2024.1413893. eCollection 2024.


DOI:10.3389/fimmu.2024.1413893
PMID:38915396
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11194308/
Abstract

INTRODUCTION: is a protozoan parasite that causes the tropical ailment known as Chagas disease, which has its origins in South America. Globally, it has a major impact on health and is transported by insect vector that serves as a parasite. Given the scarcity of vaccines and the limited treatment choices, we conducted a comprehensive investigation of core proteomics to explore a potential reverse vaccine candidate with high antigenicity. METHODS: To identify the immunodominant epitopes, T. cruzi core proteomics was initially explored. Consequently, the vaccine sequence was engineered to possess characteristics of non-allergenicity, antigenicity, immunogenicity, and enhanced solubility. After modeling the tertiary structure of the human TLR4 receptor, the binding affinities were assessed employing molecular docking and molecular dynamics simulations (MDS). RESULTS: Docking of the final vaccine design with TLR4 receptors revealed substantial hydrogen bond interactions. A server-based methodology for immunological simulation was developed to forecast the effectiveness against antibodies (IgM + IgG) and interferons (IFN-g). The MDS analysis revealed notable levels of structural compactness and binding stability with average RMSD of 5.03 Aring;, beta-factor 1.09e+5 Å, Rg is 44.7 Aring; and RMSF of 49.50 Aring;. This is followed by binding free energies calculation. The system stability was compromised by the complexes, as evidenced by their corresponding Gibbs free energies of -54.6 kcal/mol. DISCUSSION: Subtractive proteomics approach was applied to determine the antigenic regions of the T cruzi. Our study utilized computational techniques to identify B- and T-cell epitopes in the T. cruzi core proteome. In current study the developed vaccine candidate exhibits immunodominant features. Our findings suggest that formulating a vaccine targeting the causative agent of Chagas disease should be the initial step in its development.

摘要

简介:是一种原生动物寄生虫,会导致起源于南美洲的热带疾病恰加斯病。在全球范围内,它对健康有重大影响,并通过作为寄生虫的昆虫媒介传播。由于疫苗稀缺且治疗选择有限,我们对核心蛋白质组学进行了全面调查,以探索具有高抗原性的潜在反向疫苗候选物。

方法:为了鉴定免疫显性表位,首先探索了 T. cruzi 核心蛋白质组学。随后,对疫苗序列进行了工程设计,使其具有非变应原性、抗原性、免疫原性和增强的可溶性。在对人 TLR4 受体的三级结构进行建模后,通过分子对接和分子动力学模拟 (MDS) 评估了结合亲和力。

结果:将最终疫苗设计与 TLR4 受体对接显示出大量氢键相互作用。开发了一种基于服务器的免疫模拟方法,用于预测针对抗体 (IgM + IgG) 和干扰素 (IFN-g) 的效果。MDS 分析显示结构紧凑度和结合稳定性水平显著,平均 RMSD 为 5.03 Aring;,β因子 1.09e+5 Å,Rg 为 44.7 Aring;,RMSF 为 49.50 Aring;。随后计算结合自由能。复合物使系统稳定性受到损害,这一点从它们相应的 Gibbs 自由能为 -54.6 kcal/mol 得到证明。

讨论:采用消减蛋白质组学方法来确定 T cruzi 的抗原区域。我们的研究利用计算技术来鉴定 T. cruzi 核心蛋白质组中的 B 细胞和 T 细胞表位。在当前的研究中,所开发的疫苗候选物表现出免疫显性特征。我们的研究结果表明,针对恰加斯病病原体制定疫苗应该是其开发的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/452c1679a8e6/fimmu-15-1413893-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/49c181967774/fimmu-15-1413893-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/277bd224eb26/fimmu-15-1413893-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/38384acab028/fimmu-15-1413893-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/51ca71ea7964/fimmu-15-1413893-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/6e82076b3587/fimmu-15-1413893-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/d5a7f04367bc/fimmu-15-1413893-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/4f61253d98a3/fimmu-15-1413893-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/3fe19cd447be/fimmu-15-1413893-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/fd81ee157d47/fimmu-15-1413893-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/2b03e58a63c7/fimmu-15-1413893-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/452c1679a8e6/fimmu-15-1413893-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/49c181967774/fimmu-15-1413893-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/277bd224eb26/fimmu-15-1413893-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/38384acab028/fimmu-15-1413893-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/51ca71ea7964/fimmu-15-1413893-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/6e82076b3587/fimmu-15-1413893-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/d5a7f04367bc/fimmu-15-1413893-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/4f61253d98a3/fimmu-15-1413893-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/3fe19cd447be/fimmu-15-1413893-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/fd81ee157d47/fimmu-15-1413893-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/2b03e58a63c7/fimmu-15-1413893-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a796/11194308/452c1679a8e6/fimmu-15-1413893-g011.jpg

相似文献

[1]
From proteome to candidate vaccines: target discovery and molecular dynamics-guided multi-epitope vaccine engineering against kissing bug.

Front Immunol. 2024

[2]
TgVax452, an epitope-based candidate vaccine targeting Toxoplasma gondii tachyzoite-specific SAG1-related sequence (SRS) proteins: immunoinformatics, structural simulations and experimental evidence-based approaches.

BMC Infect Dis. 2024-8-29

[3]
Immuno-informatics Analysis to Identify Novel Vaccine Candidates and Design of a Multi-Epitope Based Vaccine Candidate Against parasites.

Front Immunol. 2018-10-15

[4]
Examination of antigenic proteins of Trypanosoma cruzi to fabricate an epitope-based subunit vaccine by exploiting epitope mapping mechanism.

Vaccine. 2018-9-11

[5]
Core Proteomics and Immunoinformatic Approaches to Design a Multiepitope Reverse Vaccine Candidate against Chagas Disease.

Vaccines (Basel). 2022-10-7

[6]
Trypanosoma cruzi Tc24 Antigen Expressed and Orally Delivered by Schizochytrium sp. Microalga is Immunogenic in Mice.

Mol Biotechnol. 2024-6

[7]
Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity.

PLoS Pathog. 2016-9-19

[8]
A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease.

Vaccine. 2014-6-12

[9]
Improved proteomic approach for the discovery of potential vaccine targets in Trypanosoma cruzi.

J Proteome Res. 2011-12-8

[10]
From genome screening to creation of vaccine against Trypanosoma cruzi by use of immunoinformatics.

J Infect Dis. 2014-7-28

引用本文的文献

[1]
An Update on Vaccines Against and Chagas Disease.

Pathogens. 2025-1-30

本文引用的文献

[1]
An immunoinformatics and structural vaccinology approach to design a novel and potent multi-epitope base vaccine targeting Zika virus.

BMC Chem. 2024-2-13

[2]
Harnessing Pentameric Scaffold of Cholera Toxin B (CTB) for Design of Subvirion Recombinant Dengue Virus Vaccine.

Vaccines (Basel). 2024-1-17

[3]
Computational design of experimentally validated multi-epitopes vaccine against hepatitis E virus: An immunological approach.

PLoS One. 2023

[4]
Analysis of a 29 kDa Protoscolex Protein (P29) as a Vaccine Candidate against Cystic Echinococcosis.

Arch Razi Inst. 2023-2

[5]
IEDB-3D 2.0: Structural data analysis within the Immune Epitope Database.

Protein Sci. 2023-4

[6]
Design of a multi-epitope protein as a subunit vaccine against lumpy skin disease using an immunoinformatics approach.

Sci Rep. 2022-11-12

[7]
HDOCK update for modeling protein-RNA/DNA complex structures.

Protein Sci. 2022-11

[8]
Towards an Ensemble Vaccine against the Pegivirus Using Computational Modelling Approaches and Its Validation through In Silico Cloning and Immune Simulation.

Vaccines (Basel). 2021-7-23

[9]
The Case for the Development of a Chagas Disease Vaccine: Why? How? When?

Trop Med Infect Dis. 2021-1-26

[10]
Subtractive proteomics and immunoinformatics approaches to explore Bartonella bacilliformis proteome (virulence factors) to design B and T cell multi-epitope subunit vaccine.

Infect Genet Evol. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索