Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT 06510.
Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT 06510.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2314702121. doi: 10.1073/pnas.2314702121. Epub 2024 Jun 25.
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of () in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Δ mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.
脑脊髓液(CSF)填充的脑室(脑积水量增加)扩大,是先天性脑积水(CH)的主要特征,在自闭症谱系障碍(ASD)患者中越来越受到关注。Katanin 家族微管切割 ATP 酶的一个成员,是一个已知的 ASD 风险基因,但它在人类大脑发育中的作用尚不清楚。在这里,我们显示在小鼠中 () 的无意义截短导致经典的纤毛病表型,包括精子发生受损和脑积水量增加。在人类和小鼠中,在胎儿脑室下区的纤毛放射状胶质细胞以及它们的出生后室管膜和神经元祖细胞中高度表达。在 小鼠中观察到的脑室扩大与初级纤毛的破坏和室管膜平面细胞极性的破坏有关,导致纤毛产生的 CSF 流动受损。此外,脑室扩大的 Δ 小鼠的前额叶锥体神经元表现出兴奋性驱动减少和高频放电减少。与这些在小鼠中的发现一致,我们在五名接受神经外科治疗的 CH 合并 ASD 或其他神经发育障碍的无关患者中鉴定出 中罕见的、有损伤的杂合性种系变异。具有同源 ASD 相关 KATNAL2 F244L 错义变异的小鼠重现了在人类患者中发现的脑室扩大。这些数据表明,致病性变异通过破坏胎儿放射状胶质细胞及其出生后的室管膜和神经元后代中的微管动力学,改变了脑室中的 CSF 动态平衡和实质神经元连接。结果确定了 ASD 遗传亚组患者脑室扩大的分子机制,并可能解释了一些 CH 患者尽管进行了神经外科 CSF 分流,但仍存在神经发育表型的持续存在。