Suppr超能文献

SMXL8-AGL9 模块介导独脚金内酯和赤霉素之间的串扰,以调节苹果中独脚金内酯诱导的花青素生物合成。

The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple.

机构信息

State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China.

Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China.

出版信息

Plant Cell. 2024 Oct 3;36(10):4404-4425. doi: 10.1093/plcell/koae191.

Abstract

Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.

摘要

虽然已经报道了独脚金内酯(SL)信号通路和 SL 介导的花青素生物合成,但 SL 信号与花青素生物合成之间的分子关联仍不清楚。在本研究中,我们鉴定了与花青素生物合成相关的 SL 信号转导途径以及苹果(Malus × domestica)中赤霉素(GA)和 SL 信号之间的串扰。ELONGATED HYPOCOTYL5(HY5)作为整合 SL 信号和花青素生物合成的关键节点,SL 反应因子 AGAMOUS-LIKE MADS-BOX9(AGL9)通过激活 HY5 转录促进花青素生物合成。SL 信号抑制因子 SUPPRESSOR OF MAX2 1-LIKE8(SMXL8)与 AGL9 相互作用形成复合物,通过下调 HY5 表达抑制花青素生物合成。此外,E3 泛素连接酶 PROTEOLYSIS1(PRT1)介导 SMXL8 的泛素化降解,这是与花青素生物合成相关的 SL 信号转导途径的关键部分。此外,GA 信号抑制因子 REPRESSOR-of-ga1-3-LIKE2a(RGL2a)通过破坏抑制 HY5 转录的 SMXL8-AGL9 相互作用,介导 GA 和 SL 之间的串扰。综上所述,我们的研究揭示了 SL 介导的花青素生物合成的调控机制,并揭示了 SL-GA 串扰在调节苹果中花青素生物合成中的作用。

相似文献

3
Epigenetic Silencing of Drives Anthocyanin Reduction in Developing Red-Fleshed Apple.
J Agric Food Chem. 2025 Jun 25;73(25):15550-15560. doi: 10.1021/acs.jafc.5c02314. Epub 2025 Jun 12.
6
MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple.
J Integr Plant Biol. 2024 Feb;66(2):265-284. doi: 10.1111/jipb.13608. Epub 2024 Jan 29.
8

引用本文的文献

2
An N-terminal domain specifies developmental control by the SMAX1-LIKE family of transcriptional regulators in .
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2412793122. doi: 10.1073/pnas.2412793122. Epub 2025 Jun 10.
3
Strigolactones enhance apple drought resistance via the MsABI5-MsSMXL1-MsNAC022 cascade.
Hortic Res. 2025 Apr 9;12(7):uhaf101. doi: 10.1093/hr/uhaf101. eCollection 2025 Jul.
4
Multidimensional regulation of transcription factors: decoding the comprehensive signals of plant secondary metabolism.
Front Plant Sci. 2025 Mar 26;16:1522278. doi: 10.3389/fpls.2025.1522278. eCollection 2025.
5
Light-mediated activation of enhances β-carotene accumulation in pear fruit peel.
Front Plant Sci. 2025 Feb 28;16:1542830. doi: 10.3389/fpls.2025.1542830. eCollection 2025.
6
gene integration into regulatory networks via interaction with conserved genes in peach.
Hortic Res. 2024 Sep 5;11(12):uhae252. doi: 10.1093/hr/uhae252. eCollection 2024 Dec.
7
Novel mechanisms of strigolactone-induced DWARF14 degradation in Arabidopsis thaliana.
J Exp Bot. 2024 Dec 4;75(22):7145-7159. doi: 10.1093/jxb/erae365.

本文引用的文献

1
Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression.
EMBO J. 2023 Oct 4;42(19):e112999. doi: 10.15252/embj.2022112999. Epub 2023 Aug 25.
3
The D14-SDEL1-SPX4 cascade integrates the strigolactone and phosphate signalling networks in rice.
New Phytol. 2023 Jul;239(2):673-686. doi: 10.1111/nph.18963. Epub 2023 May 17.
4
Complexity of SMAX1 signaling during seedling establishment.
Trends Plant Sci. 2023 Aug;28(8):902-912. doi: 10.1016/j.tplants.2023.03.014. Epub 2023 Apr 15.
5
OBERON3 and SUPPRESSOR OF MAX2 1-LIKE proteins form a regulatory module driving phloem development.
Nat Commun. 2023 Apr 14;14(1):2128. doi: 10.1038/s41467-023-37790-5.
6
Colorful hues: insight into the mechanisms of anthocyanin pigmentation in fruit.
Plant Physiol. 2023 Jul 3;192(3):1718-1732. doi: 10.1093/plphys/kiad160.
7
Interaction of AcMADS68 with transcription factors regulates anthocyanin biosynthesis in red-fleshed kiwifruit.
Hortic Res. 2022 Nov 15;10(2):uhac252. doi: 10.1093/hr/uhac252. eCollection 2023 Feb.
8
9
Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice.
Mol Plant. 2023 Mar 6;16(3):588-598. doi: 10.1016/j.molp.2023.01.009. Epub 2023 Jan 21.
10
Strigolactone regulates adventitious root formation via the MdSMXL7-MdWRKY6-MdBRC1 signaling cascade in apple.
Plant J. 2023 Feb;113(4):772-786. doi: 10.1111/tpj.16082. Epub 2023 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验