Jane Addams College of Social Work, University of Illinois Chicago, 1040 W. Harrison St. MC (309), Chicago, IL, 60612, United States.
University of Notre Dame, 390 N. Corbett Family Hall, South Bend, IN, 46556, United States.
BMC Public Health. 2024 Jun 25;24(1):1692. doi: 10.1186/s12889-024-19217-y.
This study sought to develop and assess an exploratory model of how demographic and psychosocial attributes, and drug use or acquisition behaviors interact to affect opioid-involved overdoses.
We conducted exploratory and confirmatory factor analysis (EFA/CFA) to identify a factor structure for ten drug acquisition and use behaviors. We then evaluated alternative structural equation models incorporating the identified factors, adding demographic and psychosocial attributes as predictors of past-year opioid overdose.
We used interview data collected for two studies recruiting opioid-misusing participants receiving services from a community-based syringe services program. The first investigated current attitudes toward drug-checking (N = 150). The second was an RCT assessing a telehealth versus in-person medical appointment for opioid use disorder treatment referral (N = 270).
Demographics included gender, age, race/ethnicity, education, and socioeconomic status. Psychosocial measures were homelessness, psychological distress, and trauma. Self-reported drug-related risk behaviors included using alone, having a new supplier, using opioids with benzodiazepines/alcohol, and preferring fentanyl. Past-year opioid-involved overdoses were dichotomized into experiencing none or any.
The EFA/CFA revealed a two-factor structure with one factor reflecting drug acquisition and the second drug use behaviors. The selected model (CFI = .984, TLI = .981, RMSEA = .024) accounted for 13.1% of overdose probability variance. A latent variable representing psychosocial attributes was indirectly associated with an increase in past-year overdose probability (β = .234, p = .001), as mediated by the EFA/CFA identified latent variables: drug acquisition (β = .683, p < .001) and drug use (β = .567, p = .001). Drug use behaviors (β = .287, p = .04) but not drug acquisition (β = .105, p = .461) also had a significant, positive direct effect on past-year overdose. No demographic attributes were significant direct or indirect overdose predictors.
Psychosocial attributes, particularly homelessness, increase the probability of an overdose through associations with risky drug acquisition and drug-using behaviors. Further research is needed to replicate these findings with populations at high-risk of an opioid-related overdose to assess generalizability and refine the metrics used to assess psychosocial characteristics.
本研究旨在探讨人口统计学和社会心理特征,以及药物使用或获取行为如何相互作用影响阿片类药物相关过量的初步模型。
我们进行了探索性和验证性因素分析(EFA/CFA),以确定十种药物获取和使用行为的因素结构。然后,我们评估了包含确定因素的替代结构方程模型,将人口统计学和社会心理特征作为过去一年阿片类药物过量的预测因素。
我们使用从社区为基础的注射器服务计划中接受服务的阿片类药物滥用参与者的两项研究收集的访谈数据。第一项研究调查了当前对药物检测的态度(N=150)。第二项是一项 RCT,评估远程医疗与面对面医疗预约对阿片类药物使用障碍治疗转诊的效果(N=270)。
人口统计学数据包括性别、年龄、种族/民族、教育程度和社会经济地位。社会心理测量包括无家可归、心理困扰和创伤。自我报告的与药物相关的风险行为包括单独使用、有新供应商、使用阿片类药物与苯二氮䓬类/酒精、以及更喜欢芬太尼。过去一年的阿片类药物相关过量被分为无或有。
EFA/CFA 显示出具有一个反映药物获取和第二个药物使用行为的两个因素结构。所选模型(CFI=0.984,TLI=0.981,RMSEA=0.024)解释了 13.1%的过量概率方差。代表社会心理特征的潜在变量通过 EFA/CFA 确定的潜在变量间接与过去一年过量概率的增加相关:药物获取(β=0.683,p<0.001)和药物使用(β=0.567,p=0.001)。药物使用行为(β=0.287,p=0.04)而不是药物获取(β=0.105,p=0.461)对过去一年的过量也有显著的正直接影响。没有人口统计学特征是过量的直接或间接预测因素。
社会心理特征,特别是无家可归,通过与危险药物获取和药物使用行为的关联,增加了过量的可能性。需要进一步研究以在高阿片类药物相关过量风险的人群中复制这些发现,以评估可推广性并改进用于评估社会心理特征的指标。