Suppr超能文献

基于算法信息论框架内对随机数生成器测试的分析构建测试集。

Building Test Batteries Based on Analyzing Random Number Generator Tests within the Framework of Algorithmic Information Theory.

作者信息

Ryabko Boris

机构信息

Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russia.

Institute of Informatics and Computer Engineering, Siberian State University of Telecommunications and Informatics, Novosibirsk 630102, Russia.

出版信息

Entropy (Basel). 2024 Jun 14;26(6):513. doi: 10.3390/e26060513.

Abstract

The problem of testing random number generators is considered and a new method for comparing the power of different statistical tests is proposed. It is based on the definitions of random sequence developed in the framework of algorithmic information theory and allows comparing the power of different tests in some cases when the available methods of mathematical statistics do not distinguish between tests. In particular, it is shown that tests based on data compression methods using dictionaries should be included in test batteries.

摘要

考虑了随机数生成器的测试问题,并提出了一种比较不同统计检验功效的新方法。该方法基于算法信息论框架下发展的随机序列定义,在数理统计的现有方法无法区分检验的某些情况下,能够比较不同检验的功效。特别地,结果表明基于使用字典的数据压缩方法的检验应纳入检验组。

相似文献

6
Quantum generators of random numbers.随机数的量子发生器。
Sci Rep. 2021 Aug 9;11(1):16108. doi: 10.1038/s41598-021-95388-7.
9
An Informational Test for Random Finite Strings.随机有限字符串的信息性测试
Entropy (Basel). 2018 Dec 6;20(12):934. doi: 10.3390/e20120934.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验