Suppr超能文献

HiCervix:用于宫颈细胞学分类的广泛分层数据集及基准

HiCervix: An Extensive Hierarchical Dataset and Benchmark for Cervical Cytology Classification.

作者信息

Cai De, Chen Jie, Zhao Junhan, Xue Yuan, Yang Sen, Yuan Wei, Feng Min, Weng Haiyan, Liu Shuguang, Peng Yulong, Zhu Junyou, Wang Kanran, Jackson Christopher, Tang Hongping, Huang Junzhou, Wang Xiyue

出版信息

IEEE Trans Med Imaging. 2024 Dec;43(12):4344-4355. doi: 10.1109/TMI.2024.3419697. Epub 2024 Dec 2.

Abstract

Cervical cytology is a critical screening strategy for early detection of pre-cancerous and cancerous cervical lesions. The challenge lies in accurately classifying various cervical cytology cell types. Existing automated cervical cytology methods are primarily trained on databases covering a narrow range of coarse-grained cell types, which fail to provide a comprehensive and detailed performance analysis that accurately represents real-world cytopathology conditions. To overcome these limitations, we introduce HiCervix, the most extensive, multi-center cervical cytology dataset currently available to the public. HiCervix includes 40,229 cervical cells from 4,496 whole slide images, categorized into 29 annotated classes. These classes are organized within a three-level hierarchical tree to capture fine-grained subtype information. To exploit the semantic correlation inherent in this hierarchical tree, we propose HierSwin, a hierarchical vision transformer-based classification network. HierSwin serves as a benchmark for detailed feature learning in both coarse-level and fine-level cervical cancer classification tasks. In our comprehensive experiments, HierSwin demonstrated remarkable performance, achieving 92.08% accuracy for coarse-level classification and 82.93% accuracy averaged across all three levels. When compared to board-certified cytopathologists, HierSwin achieved high classification performance (0.8293 versus 0.7359 averaged accuracy), highlighting its potential for clinical applications. This newly released HiCervix dataset, along with our benchmark HierSwin method, is poised to make a substantial impact on the advancement of deep learning algorithms for rapid cervical cancer screening and greatly improve cancer prevention and patient outcomes in real-world clinical settings.

摘要

宫颈细胞学检查是早期发现宫颈癌前病变和癌性病变的关键筛查策略。挑战在于准确分类各种宫颈细胞学细胞类型。现有的自动化宫颈细胞学方法主要在涵盖范围狭窄的粗粒度细胞类型的数据库上进行训练,无法提供准确反映现实世界细胞病理学状况的全面而详细的性能分析。为了克服这些限制,我们引入了HiCervix,这是目前向公众提供的最广泛的多中心宫颈细胞学数据集。HiCervix包含来自4496张全切片图像的40229个宫颈细胞,分为29个注释类别。这些类别在一个三级层次树中组织,以捕获细粒度的亚型信息。为了利用此层次树中固有的语义相关性,我们提出了HierSwin,一种基于层次视觉Transformer的分类网络。HierSwin作为粗级别和细级别宫颈癌分类任务中详细特征学习的基准。在我们的综合实验中,HierSwin表现出卓越的性能,粗级别分类准确率达到92.08%,所有三个级别平均准确率为82.93%。与获得董事会认证的细胞病理学家相比,HierSwin实现了较高的分类性能(平均准确率为0.8293对0.7359),突出了其临床应用潜力。这个新发布的HiCervix数据集,连同我们的基准HierSwin方法,有望对快速宫颈癌筛查的深度学习算法的发展产生重大影响,并在现实世界的临床环境中大大改善癌症预防和患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验