Landis Joshua D, Obrist Daniel, Zhou Jun, Renshaw Carl E, McDowell William H, Nytch Christopher J, Palucis Marisa C, Del Vecchio Joanmarie, Montano Lopez Fernando, Taylor Vivien F
Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.
Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, MA, 01854, USA.
Nat Commun. 2024 Jun 26;15(1):5430. doi: 10.1038/s41467-024-49789-7.
Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments.
土壤是汞(Hg)在全球的主要储存库,汞是一种具有神经毒性的污染物,通过人为排放进入大气并随后沉积到陆地生态系统中而不断积累。然而,全球土壤中汞的归宿仍不确定,尤其是汞以气态单质汞(GEM)的形式重新排放回大气的程度。在这里,我们使用沉降放射性核素(FRN)计时法直接测量土壤中的汞积累速率。通过在质量平衡方法中比较这些速率与测量的大气通量,我们表明,具有代表性的北极、北方、温带和热带土壤在保留人为汞方面具有定量效率。大量气态单质汞重新排放的可能性似乎仅限于少数针叶林土壤,这使那些假设土壤中遗留汞会大量重新排放的全球模型受到质疑。沉降放射性核素计时法是一种强大的工具,能够在比以往更大的空间尺度上重建陆地汞积累情况,同时深入了解不同土壤环境中汞迁移的敏感性。