Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain.
Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain.
Int J Mol Sci. 2024 Jun 7;25(12):6304. doi: 10.3390/ijms25126304.
The COVID-19 pandemic was caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which may lead to serious respiratory, vascular and neurological dysfunctions. The SARS-CoV-2 envelope protein (E protein) is a structural viroporin able to form ion channels in cell membranes, which is critical for viral replication. However, its effects in primary neurons have not been addressed. Here we used fluorescence microscopy and calcium imaging to study SARS-CoV-2 viroporin E localization and the effects on neuron damage and intracellular Ca homeostasis in a model of rat hippocampal neurons aged in vitro. We found that the E protein quickly enters hippocampal neurons and colocalizes with the endoplasmic reticulum (ER) in both short-term (6-8 days in vitro, DIV) and long-term (20-22 DIV) cultures resembling young and aged neurons, respectively. Strikingly, E protein treatment induces apoptosis in aged neurons but not in young neurons. The E protein induces variable increases in cytosolic Ca concentration in hippocampal neurons. Ca responses to the E protein are due to Ca release from intracellular stores at the ER. Moreover, E protein-induced Ca release is very small in young neurons and increases dramatically in aged neurons, consistent with the enhanced Ca store content in aged neurons. We conclude that the SARS-CoV-2 E protein quickly translocates to ER endomembranes of rat hippocampal neurons where it releases Ca, probably acting like a viroporin, thus producing Ca store depletion and neuron apoptosis in aged neurons and likely contributing to neurological damage in COVID-19 patients.
新型冠状病毒肺炎(COVID-19)是由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)感染引起的,可能导致严重的呼吸系统、血管和神经系统功能障碍。SARS-CoV-2 包膜蛋白(E 蛋白)是一种结构病毒孔蛋白,能够在细胞膜中形成离子通道,这对于病毒复制至关重要。然而,其在原代神经元中的作用尚未得到解决。在这里,我们使用荧光显微镜和钙成像技术研究了 SARS-CoV-2 病毒孔蛋白 E 在体外培养的大鼠海马神经元模型中的定位及其对神经元损伤和细胞内钙稳态的影响。我们发现 E 蛋白迅速进入海马神经元,并与内质网(ER)在短期(体外培养 6-8 天,即分化第 6-8 天)和长期(体外培养 20-22 天,即分化第 20-22 天)培养中均发生共定位,分别类似于年轻和衰老神经元。引人注目的是,E 蛋白处理诱导衰老神经元发生细胞凋亡,但不诱导年轻神经元发生细胞凋亡。E 蛋白诱导海马神经元中细胞溶质 Ca 浓度的变化。E 蛋白诱导的 Ca 反应是由于内质网(ER)中细胞内储存的 Ca 释放引起的。此外,E 蛋白诱导的 Ca 释放在年轻神经元中非常小,但在衰老神经元中显著增加,这与衰老神经元中 Ca 储存含量的增加一致。我们得出结论,SARS-CoV-2 E 蛋白迅速转运到大鼠海马神经元的内质网内膜,在那里它释放 Ca,可能像病毒孔蛋白一样,从而导致衰老神经元的 Ca 储存耗竭和神经元凋亡,并可能导致 COVID-19 患者的神经损伤。