探索基于 microRNAs 的建模方法预测多发性硬化症中的 PIRA:综合分析。
Exploring miRNAs' Based Modeling Approach for Predicting PIRA in Multiple Sclerosis: A Comprehensive Analysis.
机构信息
European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy.
IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy.
出版信息
Int J Mol Sci. 2024 Jun 7;25(12):6342. doi: 10.3390/ijms25126342.
The current hypothesis on the pathophysiology of multiple sclerosis (MS) suggests the involvement of both inflammatory and neurodegenerative mechanisms. Disease Modifying Therapies (DMTs) effectively decrease relapse rates, thus reducing relapse-associated disability in people with MS. In some patients, disability progression, however, is not solely linked to new lesions and clinical relapses but can manifest independently. Progression Independent of Relapse Activity (PIRA) significantly contributes to long-term disability, stressing the urge to unveil biomarkers to forecast disease progression. Twenty-five adult patients with relapsing-remitting multiple sclerosis (RRMS) were enrolled in a cohort study, according to the latest McDonald criteria, and tested before and after high-efficacy Disease Modifying Therapies (DMTs) (6-24 months). Through Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells. Multivariate logistic and linear models with interactions were generated. Robustness was assessed by randomization tests in R. A subset of miRNAs, correlated with PIRA, and the Expanded Disability Status Scale (EDSS), was selected. To refine the patient stratification connected to the disease trajectory, we computed a robust logistic classification model derived from baseline miRNA expression to predict PIRA status (AUC = 0.971). We built an optimal multilinear model by selecting four other miRNA predictors to describe EDSS changes compared to baseline. Multivariate modeling offers a promising avenue to uncover potential biomarkers essential for accurate prediction of disability progression in early MS stages. These models can provide valuable insights into developing personalized and effective treatment strategies.
目前关于多发性硬化症(MS)的病理生理学假说表明,炎症和神经退行性机制都参与其中。疾病修正疗法(DMTs)有效地降低了复发率,从而减少了 MS 患者的复发相关残疾。然而,在一些患者中,残疾进展不仅与新病变和临床复发有关,而且可以独立表现。无复发活动相关性进展(PIRA)对长期残疾有显著影响,这强调了揭示预测疾病进展的生物标志物的紧迫性。根据最新的麦克唐纳标准,我们招募了 25 名复发缓解型多发性硬化症(RRMS)成年患者,并在接受高效疾病修正疗法(DMTs)前后(6-24 个月)进行了测试。通过安捷伦微阵列,我们分析了外周血单核细胞中的 miRNA 图谱。使用交互作用的多元逻辑和线性模型进行生成。通过在 R 中进行随机化检验来评估稳健性。选择了一组与 PIRA 和扩展残疾状况量表(EDSS)相关的 miRNA。为了细化与疾病轨迹相关的患者分层,我们计算了一个基于 miRNA 表达的稳健逻辑分类模型,以预测 PIRA 状态(AUC=0.971)。我们通过选择另外四个 miRNA 预测因子来构建最优的多线性模型,以描述与基线相比 EDSS 的变化。多元建模为揭示早期 MS 阶段残疾进展的准确预测所需的潜在生物标志物提供了有前途的途径。这些模型可以为制定个性化和有效的治疗策略提供有价值的见解。