文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于微观结构的磁流体空间磁场分布研究

Research on Spatial Magnetic Field Distribution of Magnetic Fluids Based on Microstructure.

作者信息

Zhang Bin, Zhang Yapeng

机构信息

Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, China.

School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China.

出版信息

Materials (Basel). 2024 Jun 18;17(12):2994. doi: 10.3390/ma17122994.


DOI:10.3390/ma17122994
PMID:38930363
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11205567/
Abstract

This study focuses on the spatial magnetic field distribution of magnetic fluids, an extraordinary class of fluids composed of magnetic nanoparticles (MNPs), employing the Monte Carlo method to simulate the microstructure of magnetic fluids under an external magnetic field. On that basis, a model was established through magnetic dipole theory to delve into the spatial magnetic field distribution of magnetic fluids. The findings reveal that the application of a magnetic field leads to the formation of chain-like structures within the magnetic fluids, resulting in inhomogeneous spatial magnetic field distribution. The size and concentration of MNPs are crucial determinants that significantly affect the microstructure of magnetic fluid and its spatial magnetic field distribution. Furthermore, environmental conditions such as external magnetic field strength or temperature can also regulate the positions of MNPs within magnetic fluids and the spatial magnetic field distribution of the magnetic fluids. These observations enrich the comprehension of the fundamental mechanisms of magnetic fluids and their response to diverse factors, advancing the growing comprehension on the characteristics and applications of these remarkable magnetic fluids.

摘要

本研究聚焦于磁性流体的空间磁场分布,磁性流体是一类由磁性纳米颗粒(MNPs)组成的特殊流体,采用蒙特卡罗方法模拟外磁场作用下磁性流体的微观结构。在此基础上,通过磁偶极理论建立模型,深入探究磁性流体的空间磁场分布。研究结果表明,施加磁场会导致磁性流体内部形成链状结构,从而产生不均匀的空间磁场分布。MNPs的尺寸和浓度是显著影响磁性流体微观结构及其空间磁场分布的关键决定因素。此外,诸如外磁场强度或温度等环境条件也能调节MNPs在磁性流体中的位置以及磁性流体的空间磁场分布。这些观察结果丰富了对磁性流体基本机制及其对各种因素响应的理解,推动了对这些非凡磁性流体特性和应用的不断深入认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/b00ddb9afafd/materials-17-02994-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/986409f43181/materials-17-02994-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/48a05ce75e04/materials-17-02994-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/5b36c59a9159/materials-17-02994-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/4bb29200571f/materials-17-02994-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/5b683d5ec9f4/materials-17-02994-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/5fedebba9004/materials-17-02994-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/8ce6cbcabb8c/materials-17-02994-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/2946c6b568b6/materials-17-02994-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/ac53773d7700/materials-17-02994-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/4f3e06ec293c/materials-17-02994-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/7fe1d36e4bd1/materials-17-02994-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/73241cfd7ccc/materials-17-02994-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/b00ddb9afafd/materials-17-02994-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/986409f43181/materials-17-02994-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/48a05ce75e04/materials-17-02994-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/5b36c59a9159/materials-17-02994-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/4bb29200571f/materials-17-02994-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/5b683d5ec9f4/materials-17-02994-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/5fedebba9004/materials-17-02994-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/8ce6cbcabb8c/materials-17-02994-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/2946c6b568b6/materials-17-02994-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/ac53773d7700/materials-17-02994-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/4f3e06ec293c/materials-17-02994-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/7fe1d36e4bd1/materials-17-02994-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/73241cfd7ccc/materials-17-02994-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb14/11205567/b00ddb9afafd/materials-17-02994-g013.jpg

相似文献

[1]
Research on Spatial Magnetic Field Distribution of Magnetic Fluids Based on Microstructure.

Materials (Basel). 2024-6-18

[2]
Microstructure and magnetic properties of magnetic fluids consisting of shifted dipole particles under the influence of an external magnetic field.

J Chem Phys. 2013-12-7

[3]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[4]
Inversion of magnetic diameter distribution of magnetic fluids under high and low temperatures.

Nanotechnology. 2024-1-11

[5]
Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for Glioblastoma multiforme treatment.

Comput Methods Programs Biomed. 2021-11

[6]
A Temperature Imaging Method for Multi-Chip High Power LEDs Based on the Magnetic Nanoparticle Thermometer.

Nanomaterials (Basel). 2022-9-21

[7]
Spontaneous ferromagnetic ordering in magnetic fluids.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003-7

[8]
Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences.

Nanomaterials (Basel). 2024-1-19

[9]
Influence of perpendicular external magnetic field on microstructures of monolayer composed of ferromagnetic particles: analysis by means of quasi-two-dimensional Monte Carlo simulation.

J Colloid Interface Sci. 2008-7-1

[10]
Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field.

J Colloid Interface Sci. 2005-8-15

本文引用的文献

[1]
Biological thermometer based on the temperature sensitivity of magnetic nanoparticle paraSHIFT.

Nanotechnology. 2021-12-6

[2]
Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics.

Theranostics. 2020

[3]
Enhanced ultrafast optomagnetic effects in room-temperature ferromagnetic Pt nanoclusters embedded in silica by ion implantation.

Nanotechnology. 2020-8-28

[4]
Control of lattice spacing in a triangular lattice of feeble magnetic particles formed by induced magnetic dipole interactions.

Sci Technol Adv Mater. 2009-5-22

[5]
Magnetic nanoparticles: a novel platform for cancer theranostics.

Drug Discov Today. 2014-4

[6]
Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine.

Nanoscale Res Lett. 2012-2-21

[7]
Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles.

Theranostics. 2012-1-10

[8]
Nanoparticle temperature estimation in combined ac and dc magnetic fields.

Phys Med Biol. 2009-9-9

[9]
Possibility of active targeting to tumor by local hyperthermia with temperature-sensitive nanoparticles.

Med Hypotheses. 2008-8

[10]
Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field.

J Colloid Interface Sci. 2005-8-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索