文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多功能磁性氧化铁纳米粒子:癌症诊治的先进平台。

Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics.

机构信息

State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 32500, China.

出版信息

Theranostics. 2020 May 15;10(14):6278-6309. doi: 10.7150/thno.42564. eCollection 2020.


DOI:10.7150/thno.42564
PMID:32483453
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7255022/
Abstract

Multifunctional magnetic nanoparticles and derivative nanocomposites have aroused great concern for multimode imaging and cancer synergistic therapies in recent years. Among the rest, functional magnetic iron oxide nanoparticles (FeO NPs) have shown great potential as an advanced platform because of their inherent magnetic resonance imaging (MRI), biocatalytic activity (nanozyme), magnetic hyperthermia treatment (MHT), photo-responsive therapy and drug delivery for chemotherapy and gene therapy. Magnetic FeO NPs can be synthesized through several methods and easily surface modified with biocompatible materials or active targeting moieties. The MRI capacity could be appropriately modulated to induce response between and modes by controlling the size distribution of FeO NPs. Besides, small-size nanoparticles are also desired due to the enhanced permeation and retention (EPR) effect, thus the imaging and therapeutic efficiency of FeO NP-based platforms can be further improved. Here, we firstly retrospect the typical synthesis and surface modification methods of magnetic FeO NPs. Then, the latest biomedical application including responsive MRI, multimodal imaging, nanozyme, MHT, photo-responsive therapy and drug delivery, the mechanism of corresponding treatments and cooperation therapeutics of multifunctional FeO NPs are also be explained. Finally, we also outline a brief discussion and perspective on the possibility of further clinical translations of these multifunctional nanomaterials. This review would provide a comprehensive reference for readers to understand the multifunctional FeO NPs in cancer diagnosis and treatment.

摘要

多功能磁性纳米粒子及其衍生纳米复合材料近年来在多模式成像和癌症协同治疗方面引起了极大的关注。在其他材料中,由于其固有的磁共振成像(MRI)、生物催化活性(纳米酶)、磁热疗(MHT)、光响应治疗以及化疗和基因治疗的药物输送,功能磁性氧化铁纳米粒子(FeO NPs)作为一种先进的平台具有巨大的潜力。磁性 FeO NPs 可以通过多种方法合成,并通过用生物相容性材料或主动靶向基团对其进行表面改性。通过控制 FeO NPs 的尺寸分布,可以适当调节 MRI 能力,以诱导 和 模式之间的响应。此外,由于增强的渗透和保留(EPR)效应,还需要小尺寸的纳米粒子,因此基于 FeO NP 的平台的成像和治疗效率可以进一步提高。在这里,我们首先回顾了磁性 FeO NPs 的典型合成和表面改性方法。然后,还解释了其在响应性 MRI、多模态成像、纳米酶、MHT、光响应治疗和药物输送等最新生物医学应用中的作用,以及多功能 FeO NPs 相应治疗和协同治疗的机制。最后,我们还简要讨论并展望了这些多功能纳米材料进一步临床转化的可能性。本综述将为读者全面了解癌症诊断和治疗中的多功能 FeO NPs 提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/bb3f5d75699e/thnov10p6278g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/839d4bb5a2d1/thnov10p6278g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/0bde5854b50f/thnov10p6278g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/8bb9ee5a69d7/thnov10p6278g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/af33cb50196e/thnov10p6278g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/9505bf393ae6/thnov10p6278g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/8e1e49038ba8/thnov10p6278g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/3faf1f8e8c35/thnov10p6278g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/bcf5b6aadf1d/thnov10p6278g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/f03603741e7f/thnov10p6278g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/cb851a2da471/thnov10p6278g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/ffcdc328fc7f/thnov10p6278g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/ff95f8c2cbf5/thnov10p6278g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/5f2c62ddba74/thnov10p6278g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/86b6866c4ed5/thnov10p6278g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/a3914e30d6db/thnov10p6278g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/a1c5595e7a19/thnov10p6278g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/37651c15fc74/thnov10p6278g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/4ed64190d57f/thnov10p6278g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/9150786fdfc9/thnov10p6278g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/e2a463e7957f/thnov10p6278g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/5b26ebd8f947/thnov10p6278g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/bb3f5d75699e/thnov10p6278g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/839d4bb5a2d1/thnov10p6278g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/0bde5854b50f/thnov10p6278g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/8bb9ee5a69d7/thnov10p6278g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/af33cb50196e/thnov10p6278g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/9505bf393ae6/thnov10p6278g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/8e1e49038ba8/thnov10p6278g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/3faf1f8e8c35/thnov10p6278g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/bcf5b6aadf1d/thnov10p6278g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/f03603741e7f/thnov10p6278g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/cb851a2da471/thnov10p6278g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/ffcdc328fc7f/thnov10p6278g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/ff95f8c2cbf5/thnov10p6278g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/5f2c62ddba74/thnov10p6278g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/86b6866c4ed5/thnov10p6278g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/a3914e30d6db/thnov10p6278g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/a1c5595e7a19/thnov10p6278g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/37651c15fc74/thnov10p6278g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/4ed64190d57f/thnov10p6278g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/9150786fdfc9/thnov10p6278g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/e2a463e7957f/thnov10p6278g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/5b26ebd8f947/thnov10p6278g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32d/7255022/bb3f5d75699e/thnov10p6278g025.jpg

相似文献

[1]
Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics.

Theranostics. 2020

[2]
FeO-based nanotheranostics for magnetic resonance imaging-synergized multifunctional cancer management.

Nanomedicine (Lond). 2019-6-19

[3]
Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications.

J Nanobiotechnology. 2018-10-13

[4]
Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells.

Sci Rep. 2020-2-3

[5]
Biomimetic theranostic nanoparticles for effective anticancer therapy and MRI imaging.

J Photochem Photobiol B. 2023-12

[6]
Multifunctional theranostic nanosystems enabling photothermal-chemo combination therapy of triple-stimuli-responsive drug release with magnetic resonance imaging.

Biomater Sci. 2020-3-31

[7]
Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles.

Theranostics. 2020

[8]
4-in-1 FeO/g-CN@PPy-DOX nanocomposites: Magnetic targeting guided trimode combinatorial chemotherapy/PDT/PTT for cancer.

J Inorg Biochem. 2021-2

[9]
A biocompatible theranostic nanoplatform based on magnetic gadolinium-chelated polycyclodextrin: in vitro and in vivo studies.

Carbohydr Polym. 2021-2-15

[10]
Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy.

Acta Biomater. 2017-2

引用本文的文献

[1]
Microneedles-based local photothermal therapy promotes browning of white adipose tissue and combats obesity.

Mater Today Bio. 2025-8-4

[2]
The Biomedical Limitations of Magnetic Nanoparticles and a Biocompatible Alternative in the Form of Magnetotactic Bacteria.

J Funct Biomater. 2025-6-23

[3]
Nanomedicine Approaches for Autophagy Modulation in Cancer Therapy.

Small Sci. 2025-4-11

[4]
Bioactive metallic nanoparticles for synergistic cancer immunotherapy.

Acta Pharm Sin B. 2025-4

[5]
NIR-responsive cisplatin nanoparticles for synergistic chemo-photothermal therapy of oral squamous cell carcinoma.

RSC Adv. 2025-5-22

[6]
Mesoporous silica loaded with calcitonin gene-related peptide antagonist and alleviate oxidative stress and inflammation in the sciatic nerve.

Front Mol Biosci. 2025-3-24

[7]
The Potential of Nano-Formulated Natural Drugs in Melanoma Treatment: A Review of Pharmacological Efficacy and Mechanistic Insights.

Int J Nanomedicine. 2025-3-18

[8]
Efficient and Specific PDGFRβ-Targeting Dual-Mode T-T MRI Nanoprobe for Early Diagnosis of Non-Alcoholic Fatty Liver.

Adv Sci (Weinh). 2025-6

[9]
Recent advances in the bench-to-bedside translation of cancer nanomedicines.

Acta Pharm Sin B. 2025-1

[10]
Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics.

Front Bioeng Biotechnol. 2025-1-17

本文引用的文献

[1]
Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T-weighted magnetic resonance imaging applications.

J Mater Chem B. 2017-9-21

[2]
FeO@MnO@PPy nanocomposites overcome hypoxia: magnetic-targeting-assisted controlled chemotherapy and enhanced photodynamic/photothermal therapy.

J Mater Chem B. 2018-11-14

[3]
Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications.

Theranostics. 2020

[4]
Synthesis and Characterization of Magnetic Superadsorbent FeO-PEG-Mg-Al-LDH Nanocomposites for Ultrahigh Removal of Organic Dyes.

ACS Omega. 2020-2-12

[5]
Virus-Like FeO@BiS Nanozymes with Resistance-Free Apoptotic Hyperthermia-Augmented Nanozymitic Activity for Enhanced Synergetic Cancer Therapy.

ACS Appl Mater Interfaces. 2020-2-28

[6]
Nanoparticle-based Cell Trackers for Biomedical Applications.

Theranostics. 2020

[7]
Monitoring innate immune cell dynamics in the glioma microenvironment by magnetic resonance imaging and multiphoton microscopy (MR-MPM).

Theranostics. 2020

[8]
Facile phase transfer of hydrophobic FeO@CuS nanoparticles by red blood cell membrane for MRI and phototherapy in the second near-infrared window.

J Mater Chem B. 2020-2-14

[9]
The yin and yang of imaging tumor associated macrophages with PET and MRI.

Theranostics. 2019-10-15

[10]
Integration of FeO@UiO-66-NH@MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix.

J Hazard Mater. 2019-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索