Suppr超能文献

基于区域动态裁剪技术的夜视系统长波红外热像仪对比度增强方法

Contrast Enhancement Method Using Region-Based Dynamic Clipping Technique for LWIR-Based Thermal Camera of Night Vision Systems.

作者信息

Choi Cheol-Ho, Han Joonhwan, Cha Jeongwoo, Choi Hyunmin, Shin Jungho, Kim Taehyun, Oh Hyun Woo

机构信息

Pangyo R&D Center, Hanwha Systems Co., Ltd., 188, Pangyoyeok-ro, Bundang-gu, Sengnam-si 13524, Gyeonggi-do, Republic of Korea.

出版信息

Sensors (Basel). 2024 Jun 13;24(12):3829. doi: 10.3390/s24123829.

Abstract

In the autonomous driving industry, there is a growing trend to employ long-wave infrared (LWIR)-based uncooled thermal-imaging cameras, capable of robustly collecting data even in extreme environments. Consequently, both industry and academia are actively researching contrast-enhancement techniques to improve the quality of LWIR-based thermal-imaging cameras. However, most research results only showcase experimental outcomes using mass-produced products that already incorporate contrast-enhancement techniques. Put differently, there is a lack of experimental data on contrast enhancement post-non-uniformity (NUC) and temperature compensation (TC) processes, which generate the images seen in the final products. To bridge this gap, we propose a histogram equalization (HE)-based contrast enhancement method that incorporates a region-based clipping technique. Furthermore, we present experimental results on the images obtained after applying NUC and TC processes. We simultaneously conducted visual and qualitative performance evaluations on images acquired after NUC and TC processes. In the visual evaluation, it was confirmed that the proposed method improves image clarity and contrast ratio compared to conventional HE-based methods, even in challenging driving scenarios such as tunnels. In the qualitative evaluation, the proposed method demonstrated upper-middle-class rankings in both image quality and processing speed metrics. Therefore, our proposed method proves to be effective for the essential contrast enhancement process in LWIR-based uncooled thermal-imaging cameras intended for autonomous driving platforms.

摘要

在自动驾驶行业,使用基于长波红外(LWIR)的非制冷热成像相机的趋势日益增长,这种相机即使在极端环境下也能可靠地收集数据。因此,工业界和学术界都在积极研究对比度增强技术,以提高基于LWIR的热成像相机的质量。然而,大多数研究结果仅展示了使用已采用对比度增强技术的量产产品的实验结果。换句话说,缺乏关于非均匀性校正(NUC)和温度补偿(TC)过程之后的对比度增强的实验数据,而这些过程生成了最终产品中看到的图像。为了弥补这一差距,我们提出了一种基于直方图均衡化(HE)的对比度增强方法,该方法结合了基于区域的裁剪技术。此外,我们展示了在应用NUC和TC过程后获得的图像的实验结果。我们同时对NUC和TC过程后获取的图像进行了视觉和定性性能评估。在视觉评估中,证实了与传统的基于HE的方法相比,即使在隧道等具有挑战性的驾驶场景中,所提出的方法也能提高图像清晰度和对比度。在定性评估中,所提出的方法在图像质量和处理速度指标方面均位居中上等水平。因此,我们提出的方法被证明对于用于自动驾驶平台的基于LWIR的非制冷热成像相机中的关键对比度增强过程是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa4/11207256/f59d6c13c680/sensors-24-03829-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验