Suppr超能文献

一种同时估计光照和反射率的图像增强概率方法。

A Probabilistic Method for Image Enhancement With Simultaneous Illumination and Reflectance Estimation.

出版信息

IEEE Trans Image Process. 2015 Dec;24(12):4965-77. doi: 10.1109/TIP.2015.2474701. Epub 2015 Aug 28.

Abstract

In this paper, a new probabilistic method for image enhancement is presented based on a simultaneous estimation of illumination and reflectance in the linear domain. We show that the linear domain model can better represent prior information for better estimation of reflectance and illumination than the logarithmic domain. A maximum a posteriori (MAP) formulation is employed with priors of both illumination and reflectance. To estimate illumination and reflectance effectively, an alternating direction method of multipliers is adopted to solve the MAP problem. The experimental results show the satisfactory performance of the proposed method to obtain reflectance and illumination with visually pleasing enhanced results and a promising convergence rate. Compared with other testing methods, the proposed method yields comparable or better results on both subjective and objective assessments.

摘要

本文提出了一种新的基于线性域同时估计光照和反射率的概率图像增强方法。我们表明,与对数域相比,线性域模型可以更好地表示先验信息,从而更好地估计反射率和光照度。采用最大后验(MAP)公式,并对光照度和反射率进行先验建模。为了有效地估计光照度和反射率,采用交替方向乘子法(ADMM)来求解 MAP 问题。实验结果表明,该方法在获得反射率和光照度方面具有令人满意的性能,得到了视觉上令人愉悦的增强效果,且具有有前景的收敛速度。与其他测试方法相比,该方法在主观和客观评估方面都能得到可比或更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验