Suppr超能文献

基于 EEG 的创新疼痛识别与量化:一项初步研究。

An Innovative EEG-Based Pain Identification and Quantification: A Pilot Study.

机构信息

Department of Applied Sciences, UQAC (Université du Québec à Chicoutimi), Chicoutimi, QC G7H 2B1, Canada.

Biomechanical and Neurophysiological Research Laboratory in Neuro-Musculoskeletal Rehabilitation (Lab BioNR), Department of Health Sciences, UQAC (Université du Québec à Chicoutimi), Chicoutimi, QC G7H 2B1, Canada.

出版信息

Sensors (Basel). 2024 Jun 14;24(12):3873. doi: 10.3390/s24123873.

Abstract

OBJECTIVE

The present pilot study aimed to propose an innovative scale-independent measure based on electroencephalographic (EEG) signals for the identification and quantification of the magnitude of chronic pain.

METHODS

EEG data were collected from three groups of participants at rest: seven healthy participants with pain, 15 healthy participants submitted to thermal pain, and 66 participants living with chronic pain. Every 30 s, the pain intensity score felt by the participant was also recorded. Electrodes positioned in the contralateral motor region were of interest. After EEG preprocessing, a complex analytical signal was obtained using Hilbert transform, and the upper envelope of the EEG signal was extracted. The average coefficient of variation of the upper envelope of the signal was then calculated for the beta (13-30 Hz) band and proposed as a new EEG-based indicator, namely Piq, to identify and quantify pain.

MAIN RESULTS

The main results are as follows: (1) A Piq threshold at 10%, that is, Piq ≥ 10%, indicates the presence of pain, and (2) the higher the Piq (%), the higher the extent of pain.

CONCLUSIONS

This finding indicates that Piq can objectively identify and quantify pain in a population living with chronic pain. This new EEG-based indicator can be used for objective pain assessment based on the neurophysiological body response to pain.

SIGNIFICANCE

Objective pain assessment is a valuable decision-making aid and an important contribution to pain management and monitoring.

摘要

目的

本初步研究旨在提出一种基于脑电图(EEG)信号的创新无标度测量方法,用于识别和量化慢性疼痛的程度。

方法

从三组处于休息状态的参与者中收集 EEG 数据:7 名有疼痛的健康参与者、15 名接受热痛刺激的健康参与者和 66 名患有慢性疼痛的参与者。每隔 30s 记录参与者感受到的疼痛强度评分。感兴趣的是放置在对侧运动区域的电极。在 EEG 预处理后,使用希尔伯特变换获得复杂的分析信号,并提取 EEG 信号的上包络。然后计算信号的上包络的平均变异系数(13-30Hz 波段),并提出作为一种新的基于 EEG 的指标,即 Piq,用于识别和量化疼痛。

主要结果

主要结果如下:(1)Piq 阈值为 10%(即 Piq≥10%)表示存在疼痛,(2)Piq(%)越高,疼痛程度越高。

结论

这一发现表明,Piq 可以客观地识别和量化慢性疼痛人群中的疼痛。这种新的基于 EEG 的指标可用于基于疼痛对身体神经生理反应的客观疼痛评估。

意义

客观疼痛评估是一种有价值的决策辅助工具,也是疼痛管理和监测的重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0556/11207749/49932a7e9207/sensors-24-03873-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验