Suppr超能文献

基于自发脑电(EEG)α振荡变化的下背痛评估。

Low Back Pain Assessment Based on Alpha Oscillation Changes in Spontaneous Electroencephalogram (EEG).

机构信息

Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.

Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.

出版信息

Neural Plast. 2021 Jul 1;2021:8537437. doi: 10.1155/2021/8537437. eCollection 2021.

Abstract

Objectively and accurately assessing pain in clinical settings is challenging. Previous studies showed that alpha oscillations of electroencephalogram data are correlated with subjective perceived pain. Based on this finding, this study is aimed at assessing chronic low back pain based on alpha oscillations. Multichannel electroencephalogram data were recorded from 27 subjects with chronic low back pain under the simple conditions of closing eyes or opening eyes. Spectral analyses were conducted to extract the alpha band responses, and the alpha powers were calculated for the two conditions, respectively. Normalized alpha power was calculated by subtracting the alpha power in the eyes-open condition from that in the eyes-closed condition. The correlation between the alpha power and the subjective pain intensity was evaluated in frontal, central, and posterior regions. The normalized alpha power in the central region was negatively correlated with the subjective pain intensity ( = -0.50, = 0.01), with the strongest correlation occurring at the Cz electrode ( = -0.59, = 0.04). The correlation analysis results demonstrated the possibility of using the differences of alpha spectral power between eyes-closed and eyes-open conditions as a measure for assessing chronic low back pain. The findings suggest that the normalized alpha power in the central region may be used as a measurable and quantitative indicator of chronic pain for clinical applications.

摘要

在临床环境中客观准确地评估疼痛具有挑战性。先前的研究表明,脑电图数据的α 振荡与主观感知的疼痛相关。基于这一发现,本研究旨在基于α 振荡评估慢性下背痛。从 27 名患有慢性下背痛的受试者在闭眼或睁眼的简单条件下记录多通道脑电图数据。进行频谱分析以提取α 波段反应,并分别计算两种条件下的α 功率。通过从睁眼条件下的α 功率中减去闭眼条件下的α 功率来计算归一化的α 功率。评估α 功率与主观疼痛强度之间在额区、中央区和后区的相关性。中央区的归一化α 功率与主观疼痛强度呈负相关(= -0.50,= 0.01),在 Cz 电极处相关性最强(= -0.59,= 0.04)。相关分析结果表明,使用闭眼和睁眼条件下α 光谱功率差异作为评估慢性下背痛的一种测量方法是可行的。研究结果表明,中央区域的归一化α 功率可能可作为慢性疼痛的一种可测量和定量的临床应用指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/234c/8266462/bfed83486104/NP2021-8537437.001.jpg

相似文献

1
Low Back Pain Assessment Based on Alpha Oscillation Changes in Spontaneous Electroencephalogram (EEG).
Neural Plast. 2021 Jul 1;2021:8537437. doi: 10.1155/2021/8537437. eCollection 2021.
2
Re-test reliability and internal consistency of EEG alpha-band oscillations in older adults with chronic knee pain.
Clin Neurophysiol. 2020 Nov;131(11):2630-2640. doi: 10.1016/j.clinph.2020.07.022. Epub 2020 Aug 26.
3
Impact of Fibromyalgia on Alpha-2 EEG Power Spectrum in the Resting Condition: A Descriptive Correlational Study.
Biomed Res Int. 2019 Apr 1;2019:7851047. doi: 10.1155/2019/7851047. eCollection 2019.
5
Differences in EEG patterns between tonic and high frequency spinal cord stimulation in chronic pain patients.
Clin Neurophysiol. 2020 Aug;131(8):1731-1740. doi: 10.1016/j.clinph.2020.03.040. Epub 2020 May 7.
6
Resting-state EEG alpha rhythm spectral power in children with specific language impairment: a cross-sectional study.
J Appl Biomed. 2023 Sep;21(3):113-120. doi: 10.32725/jab.2023.013. Epub 2023 Sep 18.
7
Prestimulus cortical EEG oscillations can predict the excitability of the primary motor cortex.
Brain Stimul. 2019 Nov-Dec;12(6):1508-1516. doi: 10.1016/j.brs.2019.06.013. Epub 2019 Jun 12.
8
Radiofrequency signal affects alpha band in resting electroencephalogram.
J Neurophysiol. 2015 Apr 1;113(7):2753-9. doi: 10.1152/jn.00765.2014. Epub 2015 Feb 18.
10
Tonic pain and continuous EEG: prediction of subjective pain perception by alpha-1 power during stimulation and at rest.
Clin Neurophysiol. 2012 Mar;123(3):605-12. doi: 10.1016/j.clinph.2011.08.006. Epub 2011 Sep 1.

引用本文的文献

3
EEG alpha/beta features as a biomarker for quantifying pain in patients with lumbar disk herniation.
Front Neurosci. 2025 Feb 11;19:1507245. doi: 10.3389/fnins.2025.1507245. eCollection 2025.
4
The Analysis of Spontaneous Electroencephalogram (EEG) in Chronic Low Back Pain Patients Compared with Healthy Subjects.
Med J Islam Repub Iran. 2023 Nov 28;37:128. doi: 10.47176/mjiri.37.128. eCollection 2023.
5
Lower individual alpha frequency in individuals with chronic low back pain and fear of movement.
Pain. 2024 May 1;165(5):1033-1043. doi: 10.1097/j.pain.0000000000003098. Epub 2023 Nov 29.
6
Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives.
Pain Res Manag. 2023 Jun 28;2023:6018736. doi: 10.1155/2023/6018736. eCollection 2023.
7
In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand?
Front Neurosci. 2023 Jun 14;17:1186418. doi: 10.3389/fnins.2023.1186418. eCollection 2023.
8
Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: a systematic review.
Pain. 2023 Jun 1;164(6):1200-1221. doi: 10.1097/j.pain.0000000000002825. Epub 2022 Nov 28.

本文引用的文献

1
Pain assessment in clinical trials: a narrative review.
Ann Transl Med. 2021 Jan;9(2):188. doi: 10.21037/atm-20-3451.
2
Characterization of Source-Localized EEG Activity During Sustained Deep-Tissue Pain.
Brain Topogr. 2021 Mar;34(2):192-206. doi: 10.1007/s10548-020-00815-z. Epub 2021 Jan 5.
6
Methodological challenges in conducting instrumentation research in non-communicative palliative care patients.
Appl Nurs Res. 2020 Feb;51:151199. doi: 10.1016/j.apnr.2019.151199. Epub 2019 Nov 6.
7
Alpha-phase synchrony EEG training for multi-resistant chronic low back pain patients: an open-label pilot study.
Eur Spine J. 2019 Nov;28(11):2487-2501. doi: 10.1007/s00586-019-06051-9. Epub 2019 Jun 28.
10
The search for pain biomarkers in the human brain.
Brain. 2018 Dec 1;141(12):3290-3307. doi: 10.1093/brain/awy281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验