文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于可植入设备的抗肿瘤嵌入式生物聚合物球体

Antitumoral-Embedded Biopolymeric Spheres for Implantable Devices.

作者信息

Grumezescu Valentina, Gherasim Oana, Gălățeanu Bianca, Hudiță Ariana

机构信息

Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.

Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.

出版信息

Pharmaceutics. 2024 Jun 3;16(6):754. doi: 10.3390/pharmaceutics16060754.


DOI:10.3390/pharmaceutics16060754
PMID:38931875
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11207774/
Abstract

The bioactive surface modification of implantable devices paves the way towards the personalized healthcare practice by providing a versatile and tunable approach that increase the patient outcome, facilitate the medical procedure, and reduce the indirect or secondary effects. The purpose of our study was to assess the performance of composite coatings based on biopolymeric spheres of poly(lactide-co-glycolide) embedded with hydroxyapatite (HA) and methotrexate (MTX). Bio-simulated tests performed for up to one week evidenced the gradual release of the antitumor drug and the biomineralization potential of PLGA/HA-MTX sphere coatings. The composite materials proved superior biocompatibility and promoted enhanced cell adhesion and proliferation with respect to human preosteoblast and osteosarcoma cell lines when compared to pristine titanium.

摘要

可植入设备的生物活性表面改性通过提供一种通用且可调节的方法,为个性化医疗实践铺平了道路,这种方法可提高患者治疗效果、简化医疗程序并减少间接或次要影响。我们研究的目的是评估基于聚(丙交酯-共-乙交酯)生物聚合物球体并嵌入羟基磷灰石(HA)和甲氨蝶呤(MTX)的复合涂层的性能。长达一周的生物模拟测试证明了抗肿瘤药物的逐渐释放以及PLGA/HA-MTX球体涂层的生物矿化潜力。与原始钛相比,复合材料在与人类前成骨细胞和骨肉瘤细胞系的比较中显示出卓越的生物相容性,并促进了细胞的粘附和增殖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/1291d81579e5/pharmaceutics-16-00754-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/9c0b7e3c2b2a/pharmaceutics-16-00754-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/656e31359268/pharmaceutics-16-00754-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/99f75938fad7/pharmaceutics-16-00754-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/f18133edc1bd/pharmaceutics-16-00754-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/a282a335cec6/pharmaceutics-16-00754-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/3ae986f21a74/pharmaceutics-16-00754-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/d32c748e513c/pharmaceutics-16-00754-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/1291d81579e5/pharmaceutics-16-00754-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/9c0b7e3c2b2a/pharmaceutics-16-00754-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/656e31359268/pharmaceutics-16-00754-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/99f75938fad7/pharmaceutics-16-00754-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/f18133edc1bd/pharmaceutics-16-00754-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/a282a335cec6/pharmaceutics-16-00754-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/3ae986f21a74/pharmaceutics-16-00754-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/d32c748e513c/pharmaceutics-16-00754-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f559/11207774/1291d81579e5/pharmaceutics-16-00754-g008.jpg

相似文献

[1]
Antitumoral-Embedded Biopolymeric Spheres for Implantable Devices.

Pharmaceutics. 2024-6-3

[2]
Bioactive Ibuprofen-Loaded PLGA Coatings for Multifunctional Surface Modification of Medical Devices.

Polymers (Basel). 2021-4-27

[3]
Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications.

Materials (Basel). 2019-8-8

[4]
In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma.

Drug Deliv Transl Res. 2017-4

[5]
An injectable scaffold: rhBMP-2-loaded poly(lactide-co-glycolide)/hydroxyapatite composite microspheres.

Acta Biomater. 2009-7-15

[6]
A combined-modification method of carboxymethyl β-cyclodextrin and lignin for nano-hydroxyapatite to reinforce poly(lactide-co-glycolide) for bone materials.

Int J Biol Macromol. 2020-10-1

[7]
Preparation of BMP-2/chitosan/hydroxyapatite antibacterial bio-composite coatings on titanium surfaces for bone tissue engineering.

Biomed Microdevices. 2019-10-26

[8]
Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings.

Biomaterials. 2005-4

[9]
Biomimetic Hydroxyapatite Composite Coatings with a Variable Morphology Mediated by Silk Fibroin and Its Derived Peptides Enhance the Bioactivity on Titanium.

ACS Biomater Sci Eng. 2023-1-9

[10]
Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications.

Colloids Surf B Biointerfaces. 2018-9-18

本文引用的文献

[1]
3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects.

Biomed Pharmacother. 2024-3

[2]
Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way.

Biomimetics (Basel). 2024-1-12

[3]
From Static to Dynamic: Smart Materials Pioneering Additive Manufacturing in Regenerative Medicine.

Int J Mol Sci. 2023-10-30

[4]
3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration.

Heliyon. 2023-8-22

[5]
Microfluidics-based PLGA nanoparticles of ratiometric multidrug: From encapsulation and release rates to cytotoxicity in human lens epithelial cells.

Heliyon. 2023-7-15

[6]
Practical Application of 3D Printing for Pharmaceuticals in Hospitals and Pharmacies.

Pharmaceutics. 2023-7-4

[7]
Co-Delivery of Methotrexate and Nanohydroxyapatite with Polyethylene Glycol Polymers for Chemotherapy of Osteosarcoma.

Micromachines (Basel). 2023-3-29

[8]
PLGA-based drug delivery systems in treating bone tumors.

Front Bioeng Biotechnol. 2023-6-1

[9]
Long-acting PLGA microspheres: Advances in excipient and product analysis toward improved product understanding.

Adv Drug Deliv Rev. 2023-7

[10]
Calcium phosphate bone cements as local drug delivery systems for bone cancer treatment.

Biomater Adv. 2023-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索