文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Advances in 2,3-Dimethylmaleic Anhydride (DMMA)-Modified Nanocarriers in Drug Delivery Systems.

作者信息

Wan Dong, Wu Yanan, Liu Yujun, Liu Yonghui, Pan Jie

机构信息

School of Chemistry, Tiangong University, Tianjin 300387, China.

School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.

出版信息

Pharmaceutics. 2024 Jun 14;16(6):809. doi: 10.3390/pharmaceutics16060809.


DOI:10.3390/pharmaceutics16060809
PMID:38931929
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11207803/
Abstract

Cancer represents a significant threat to human health. The cells and tissues within the microenvironment of solid tumors exhibit complex and abnormal properties in comparison to healthy tissues. The efficacy of nanomedicines is inhibited by the presence of substantial and complex physical barriers in the tumor tissue. The latest generation of intelligent drug delivery systems, particularly nanomedicines capable of charge reversal, have shown promise in addressing this issue. These systems can transform their charge from negative to positive upon reaching the tumor site, thereby enhancing tumor penetration via transcytosis and promoting cell internalization by interacting with the negatively charged cell membranes. The modification of nanocarriers with 2,3-dimethylmaleic anhydride (DMMA) and its derivatives, which are responsive to weak acid stimulation, represents a significant advance in the field of charge-reversal nanomedicines. This review provides a comprehensive examination of the recent insights into DMMA-modified nanocarriers in drug delivery systems, with a particular focus on their potential in targeted therapeutics. It also discusses the synthesis of DMMA derivatives and their role in charge reversal, shell detachment, size shift, and ligand reactivation mechanisms, offering the prospect of a tailored, next-generation therapeutic approach to overcome the diverse challenges associated with cancer therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/7dfcf3fa0b56/pharmaceutics-16-00809-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/3aec7a3580e3/pharmaceutics-16-00809-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/9e3f1bbc7a6a/pharmaceutics-16-00809-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/9cdb2db9efd4/pharmaceutics-16-00809-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/a72031f660b4/pharmaceutics-16-00809-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/ae7b06ba85a6/pharmaceutics-16-00809-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/7cba20e39a3e/pharmaceutics-16-00809-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/5a0f77ad4fea/pharmaceutics-16-00809-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/29a028eb95fc/pharmaceutics-16-00809-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/35561182c5fe/pharmaceutics-16-00809-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/52b5286947e1/pharmaceutics-16-00809-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/c5472b195fc4/pharmaceutics-16-00809-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/7dfcf3fa0b56/pharmaceutics-16-00809-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/3aec7a3580e3/pharmaceutics-16-00809-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/9e3f1bbc7a6a/pharmaceutics-16-00809-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/9cdb2db9efd4/pharmaceutics-16-00809-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/a72031f660b4/pharmaceutics-16-00809-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/ae7b06ba85a6/pharmaceutics-16-00809-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/7cba20e39a3e/pharmaceutics-16-00809-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/5a0f77ad4fea/pharmaceutics-16-00809-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/29a028eb95fc/pharmaceutics-16-00809-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/35561182c5fe/pharmaceutics-16-00809-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/52b5286947e1/pharmaceutics-16-00809-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/c5472b195fc4/pharmaceutics-16-00809-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4674/11207803/7dfcf3fa0b56/pharmaceutics-16-00809-g012.jpg

相似文献

[1]
Advances in 2,3-Dimethylmaleic Anhydride (DMMA)-Modified Nanocarriers in Drug Delivery Systems.

Pharmaceutics. 2024-6-14

[2]
Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.

Acc Chem Res. 2018-10-15

[3]
Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery.

Colloids Surf B Biointerfaces. 2018-5-17

[4]
Dual-Functionalized Janus Mesoporous Silica Nanoparticles with Active Targeting and Charge Reversal for Synergistic Tumor-Targeting Therapy.

ACS Appl Mater Interfaces. 2019-11-14

[5]
Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery.

ACS Appl Mater Interfaces. 2018-2-7

[6]
Small Morph Nanoparticles for Deep Tumor Penetration via Caveolae-Mediated Transcytosis.

ACS Appl Mater Interfaces. 2020-8-26

[7]
Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency.

ACS Nano. 2016-3-22

[8]
Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems.

Acta Biomater. 2019-6-27

[9]
Tumor-acidity activated surface charge-conversion of polymeric nanocarriers for enhanced cell adhesion and targeted drug release.

Macromol Rapid Commun. 2014-10

[10]
Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer.

Acta Biomater. 2020-3-15

引用本文的文献

[1]
Recent Advances in Nanoparticle and Nanocomposite-Based Photodynamic Therapy for Cervical Cancer: A Review.

Cancers (Basel). 2025-8-4

[2]
Bioactive Properties and In Vitro Digestive Release of Cannabidiol (CBD) from Tailored Composites Based on Carbon Materials.

Pharmaceutics. 2024-8-27

本文引用的文献

[1]
[Cancer incidence and mortality in China, 2022].

Zhonghua Zhong Liu Za Zhi. 2024-3-23

[2]
Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis.

Small. 2024-1

[3]
MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer.

Breast Cancer Res. 2023-1-12

[4]
Intracellular and extracellular enzymatic responsive micelle for intelligent therapy of cancer.

Nano Res. 2023

[5]
Tumor Temperature: Friend or Foe of Virus-Based Cancer Immunotherapy.

Biomedicines. 2022-8-19

[6]
Blockage of the IDO1 pathway by charge-switchable nanoparticles amplifies immunogenic cell death for enhanced cancer immunotherapy.

Acta Biomater. 2022-9-15

[7]
Application of Nano Drug Delivery System (NDDS) in Cancer Therapy: A Perspective.

Recent Pat Anticancer Drug Discov. 2022

[8]
Charge-Conversion Strategies for Nucleic Acid Delivery.

Adv Funct Mater. 2021-6-9

[9]
Correction to "Reversing Chemotherapy Resistance by a Synergy between Lysosomal pH-Activated Mitochondrial Drug Delivery and Erlotinib-Mediated Drug Efflux Inhibition".

ACS Appl Mater Interfaces. 2022-4-27

[10]
pH-Sensitive and Charge-Reversal Polymeric Nanoplatform Enhanced Photothermal/Photodynamic Synergistic Therapy for Breast Cancer.

Front Bioeng Biotechnol. 2022-2-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索