Guo Hongxia, Ding Xiaoyan, Hua Dong, Liu Minchi, Yang Maocheng, Gong Yuanxin, Ye Nan, Chen Xiaozhong, He Jiuxiang, Zhang Yu, Xu Xiaofeng, Li Jintao
Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China.
Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany.
Vaccines (Basel). 2024 May 22;12(6):563. doi: 10.3390/vaccines12060563.
The dengue virus, the primary cause of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is the most widespread mosquito-borne virus worldwide. In recent decades, the prevalence of dengue fever has increased markedly, presenting substantial public health challenges. Consequently, the development of an efficacious vaccine against dengue remains a critical goal for mitigating its spread. Our research utilized Celcradle™, an innovative tidal bioreactor optimized for high-density cell cultures, to grow Vero cells for dengue virus production. By maintaining optimal pH levels (7.0 to 7.4) and glucose concentrations (1.5 g/L to 3.5 g/L) during the proliferation of cells and viruses, we achieved a peak Vero cell count of approximately 2.46 × 10, nearly ten times the initial count. The use of Celcradle™ substantially decreased the time required for cell yield and virus production compared to conventional Petri dish methods. Moreover, our evaluation of the immunogenicity of the Celcradle™-produced inactivated DENV4 through immunization of mice revealed that sera from these mice demonstrated cross-reactivity with DENV4 cultured in Petri dishes and showed elevated antibody titers compared to those from mice immunized with virus from Petri dishes. These results indicate that the dengue virus cultivated using the Celcradle™ system exhibited enhanced immunogenicity relative to that produced in traditional methods. In conclusion, our study highlights the potential of the Celcradle™ bioreactor for large-scale production of inactivated dengue virus vaccines, offering significant promise for reducing the global impact of dengue virus infections and accelerating the development of effective vaccination strategies.
登革热病毒是登革热、登革出血热和登革休克综合征的主要病因,是全球传播最广泛的蚊媒病毒。近几十年来,登革热的流行率显著上升,带来了重大的公共卫生挑战。因此,开发一种有效的登革热疫苗仍然是减缓其传播的关键目标。我们的研究利用Celcradle™,一种针对高密度细胞培养优化的创新潮汐生物反应器,来培养用于生产登革热病毒的Vero细胞。通过在细胞和病毒增殖过程中维持最佳pH水平(7.0至7.4)和葡萄糖浓度(1.5 g/L至3.5 g/L),我们实现了Vero细胞峰值计数约为2.46×10,几乎是初始计数的十倍。与传统培养皿方法相比,使用Celcradle™大大缩短了细胞产量和病毒生产所需的时间。此外,我们通过对小鼠进行免疫来评估Celcradle™生产的灭活DENV-4的免疫原性,结果显示这些小鼠的血清与在培养皿中培养的DENV-4具有交叉反应性,并且与用培养皿中病毒免疫的小鼠相比,抗体滴度有所提高。这些结果表明,使用Celcradle™系统培养的登革热病毒相对于传统方法生产的病毒具有更强的免疫原性。总之,我们的研究突出了Celcradle™生物反应器在大规模生产灭活登革热病毒疫苗方面的潜力,为减少登革热病毒感染的全球影响和加速有效疫苗接种策略的开发提供了重要前景。