Suppr超能文献

利用多光谱光电容积脉搏波技术和深度学习算法实现高精度心率检测。

High-accuracy heart rate detection using multispectral IPPG technology combined with a deep learning algorithm.

机构信息

School of Physics, Changchun University of Science and Technology, Changchun, China.

Key Laboratory of Jilin Province for Spectral Detection Science and Technology, Changchun University of Science and Technology, Changchun, China.

出版信息

J Biophotonics. 2024 Sep;17(9):e202400119. doi: 10.1002/jbio.202400119. Epub 2024 Jun 27.

Abstract

Image Photoplethysmography (IPPG) technology is a noncontact physiological parameter detection technology, which has been widely used in heart rate (HR) detection. However, traditional imaging devices still have issues such as narrower receiving spectral range and inferior motion detection performance. In this paper, we propose a HR detection method based on multi-spectral video. Our method combining multispectral imaging with IPPG technology provides more accurate physiological information. To realize real-time evaluation of HR directly from facial multispectral videos, we propose a new end-to-end neural network, namely IPPGResNet18. The IPPGResNet18 model was trained on the multispectral video dataset from which better results were achieved: MAE = 2.793, RMSE = 3.695, SD = 3.707, p = 0.304. The experimental results demonstrate a high accuracy of HR detection under motion state using this detection method. In respect of real-time monitoring of HR during movement, our method is obviously superior to the conventional technical solutions.

摘要

图像光体积描记术(IPPG)技术是一种非接触式生理参数检测技术,已广泛应用于心率(HR)检测。然而,传统的成像设备仍然存在接收光谱范围较窄、运动检测性能较差等问题。在本文中,我们提出了一种基于多光谱视频的 HR 检测方法。我们将多光谱成像与 IPPG 技术相结合的方法提供了更准确的生理信息。为了直接从面部多光谱视频中实现 HR 的实时评估,我们提出了一种新的端到端神经网络,即 IPPGResNet18。IPPGResNet18 模型在多光谱视频数据集上进行了训练,从而获得了更好的结果:MAE=2.793,RMSE=3.695,SD=3.707,p=0.304。实验结果表明,该检测方法在运动状态下具有较高的 HR 检测精度。在运动过程中对 HR 的实时监测方面,我们的方法明显优于传统的技术解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验